Расчет сейсмически безопасных расстояний
Расчет сейсмобезопасных расстояний при взрывном обрушении опоры технологической металлоконструкции выполнен на основании рекомендаций методики [3] и "Инструкции по определению безопасных расстояний при взрывных работах и хранении ВМ" ЕПБВР [2].
Радиус безопасной зоны rс рассчитывался из выражения [2]:
, (10)
где QЭ - масса эквивалентного заряда тротила, кг;
КГ - коэффициент, зависящий от свойств грунта в основании охраняемого сооружения;
КС - коэффициент, зависящий от типа сооружения и характера застройки;
a - коэффициент, зависящий от условий взрывания.
При обрушении опоры технологической металлоконструкции на основание [2] сейсмобезопасные расстояния оцениваются по сейсмическому действию эквивалентного заряда тротила. Величина эквивалентного заряда определяется из выражения:
, (11)
где М - масса вертикально падающей конструкции;
Н - высота падения (Н=20 м);
- энергия выделяющаяся при взрыве 1 кг тротила ( =4230 кДж/кг);
q - ускорение силы тяжести.
Масса технологической металлоконструкции составляет (см. раздел 4) 3970 тонн.
Объектом оценки сейсмического воздействия является ближайшее гидротехническое сооружение, распложенное на дамбе на расстоянии 500 м от технологической металлоконструкции.
Сооружение выполнено из железобетона и металлических конструкций опирающихся на массивный фундамент. В основании фундамента находятся водонасыщенные грунты. Оценка сейсмобезопасных расстояний производилась для мгновенного обрушения технологической металлоконструкции.
Радиус безопасного расстояния отсчитывается от центра опоры технологической металлоконструкции к охраняемому объекту.
Учитывая незавершенное строительство сооружений, в расчете принято максимальное значение коэффициента КС=2. Для водонасыщенных грунтов КГ=20. В связи со сложностью идентификации условий взрывания принимаем максимальное значение a=1.
Расчет сейсмобезопасных расстояний при обрушении моста
Масса эквивалентного заряда:
Сейсмобезопасное расстояние при мгновенном взрывании (обрушении):
В расчете не учитывалось:
* демпфирование удара основания и продольных балок технологической металлоконструкции падении на грунт;
* затраты кинетической энергии на деформации металлоконструкций при ударе.
Поскольку расстояние до пропускных сооружений в 2,5 раза превышает величину rcМ , в проекте принята более надежная схема обрушения.
Проведем оценку сейсмобезопасности обрушения технологической металлоконструкции по методике [2].
Для оценки сейсмобезопасных условий взрывания (обрушения) следует воспользоваться выражением для скорости смещения грунта (фундамента) у основания охраняемого объекта.
, (12)
где V – скорость смещения грунта (фундамента), см/с;
К – коэффициент, характеризующий удельный сейсмический эффект 100<= К=>400;
- коэффициент учитывающий снижение интенсивности сейсмических волн с глубиной (для заглубленных объектов – 2, для наземных объектов – 1);
- показатель затухания сейсмических волн с расстоянием (1,5 – 2);
- коэффициент, зависящий от плотности заряжания шпура –1;
В – степень экранизации (без экрана –1);
r – расстояние до охраняемого объекта.
Таблица 4. – Предельно допустимые значения скоростей колебаний грунта в основании
охраняемых объектов
№ п/п | Характеристика объекта | Скорость колебаний, см/с |
Жилые здания и сооружения | 1 – 3 | |
Здания производственного назначения | 5 – 7 | |
Несущие колонны цеха | 10 – 20 | |
Стеновые заполнения | ||
Сохраняемые железобетонные фундаменты и их части | 10 – 50 | |
Аппаратура контроля и защиты | 3 – 6 | |
Электросиловые установки | 10 –20 | |
Опоры мостовых кранов | ||
Опоры электропередач | 20 – 30 | |
Дымовые и вентиляционные трубы | 3 – 10 | |
Футеровка печей | ||
Трубопроводы | ||
Электрические кабели | ||
Подвальные помещения (исключающие трещинообразования и вываливание бетона) |
Сравнивая полученный результат с данными таблицы 3 можно утверждать, что взрывные работы по обрушению технологической металлоконструкции безопасны для охраняемого объекта.