Металлокерамические инструментальные материалы.
К металлокерамическим материалам относятся твердые инструментальные сплавы, антифрикционные и фрикционные сплавы, пористые сплавы для фильтров и деталей охлаждения, сплавы для конструкционных деталей, магнитные сплавы, электротехнические сплавы для работы в условиях высоких температур.
Твердые инструментальные металлокерамические сплавы типа ВК, ТК и ТТК рассмотрены в курсах, посвященных обработке металлов резанием.
Антифрикционные металлокерамические сплавы изготовляют на железной, медной (бронзовой) или алюминиевой основе с добавлением небольшого количества графита дисперсном состоянии. Графит снижает коэффициент трения, уменьшает износ, предохраняет детали от заедания.
При спекании порошкового сплава на основе меди легкоплавкое олово диффундирует в медь, образуя твердый раствор. Допустимые температура и давление для подшипников на медной основе примерно в 2 раза ниже, чем для сплавов на железной основе. Антифрикционные металлокерамические сплавы обладают хорошей теплопроводностью, но пониженными показателями прочности. По этой причине целесообразно применение тонких антифрикционных покрытий, наносимых на поверхность стальной детали. С этой точки зрения большой интерес представляет; металлофторопластовый материал. В этом случае на стальную ленту с тонким медным покрытием наносят слой бронзового порошка, который после спекания образует пористый слой, прочно соединенный с подложкой; затем поры заполняют фторопластом. В дальнейшем из ленты вырубают заготовку, которую свертывают в подшипник. Такие подшипники могут работать в широком диапазоне температур, при больших давлениях, высокой частоте вращения вала и при отсутствии дополнительной смазки.
Фрикционные сплавы обладают высоким коэффициентом трения и одновременно износостойки. Их используют для дисков, лент, колодок в различных тормозных устройствах. Сплавы имеют сложный состав. К примеру, сплав на основе железа содержит, помимо основного компонента͵ медь, свинец, графит, кремнезем, асбест, сернокислый барий. Асбест и кремнезем обеспечивают высокий коэффициент трения, графит предохраняет от истирания и износа, медь придает хорошую теплопроводность, свинец предохраняет от чрезмерного перегрева и способствует плавному торможению, сернокислый барий устраняет прилипаемость трущихся поверхностей. Коэффициент сухого трения сплава на железной основе по чугуну составляет 0,3—0,45, допустимая температура 550 С. Прочность сплавов невелика, в связи с этим их используют в виде слоев толщиной 0.2-10 мм на стальной подложке.
Высоко пористые сплавы нашли применение для фильтров. Металлические фильтры изготовляют из порошков и сплавов, стойких против окисления (бронза, латунь, коррозионно-стойкая сталь и др.). Пористость металлических фильтров составляет 40—60 % и выше. Прессование в этом случае, как правило, не производят, спеканию подвергается порошок, свободно засыпанный в форму. Важно заметить, что для сохранения при спекании и для их увеличения в порошок вводят добавки, которые не сплавляются с основным материалом или улетучиваются под воздействием высоких температур.
Металлические фильтры применяют для очистки от твердых частиц жидкого горючего, смазочных материалов, газов и воздуха. Фильтры удобны в эксплуатации, имеют небольшие размеры. Для очистки их достаточно промыть, прокалить и продуть воздухом в направлении, обратном фильтрации.
Высококачественным магнитным материалом является чистый железный порошок, получаемый электролитическим способом, железный порошок высокой чистоты, изготовляемый способом термической диссоциации.
Для работы в условиях высоких температур созданы металлокерамические сплавы на основе различных тугоплавких химических соединений металлов, - карбиды титана, ниобия и тантала, борид титана, оксид алюминия и др. Эти материалы характеризуются высокими жаропрочностью и жаростойкостью.
К недостаткам этих сплавов следует отнести большую хрупкость, высокую чувствительность к надрезам.