Метод Стьюдента для зависимых выборок

Параметрические методы. Метод Стьюдента (f-тест)

Это параметрический метод, используемый для проверки гипотез о достоверности разницы средних при анализе количественных данных о популяциях с нормальным распределением и с одинаковой вариансой. К сожалению, метод Стьюдента слишком часто используют для малых выборок, не убедившись предварительно в том, что данные в соответствующих популяциях подчиняются закону нормального распределения (например, результаты выполнения слишком легкого задания, с которым справились все испытуемые, или же, наоборот, слишком трудного задания не дают нормального распределения).

Метод Стьюдента различен для независимых и зависимых выборок. Независимые выборки получаются при исследовании двух различных групп испытуемых (в нашем эксперименте это контрольная и опытная группы). В случае независимых выборок для анализа разницы средних применяют формулу

где М1 — средняя первой выборки; М2 — средняя второй выборки; s1 — стандартное отклонение для первой выборки; s2 — стандартное отклонение для второй выборки; nl и n2 — число элементов в первой и второй выборках.

Теперь осталось лишь найти в таблице значений t величину, соответствующую n-2 степеням свободы, где n — общее число испытуемых в обеих выборках, и сравнить эту величину с результатом расчета по формуле.

Если наш результат больше, чем значение для уровня достоверности 0,05 (вероятность 5%), найденное в таблице, то можно отбросить нулевую гипотезу (Н0) и принять альтернативную гипотезу (Н1) т.е. считать разницу средних достоверной.

Если же, напротив, полученный при вычислении результат меньше, чем табличный (для n-2 степеней свободы), то нулевую гипотезу нельзя отбросить и, следовательно, разница средних недостоверна.

В нашем эксперименте с помощью метода Стьюдента для независимых выборок можно было бы, например, проверить, существует ли достоверная разница между фоновыми уровнями (значениями, полученными до воздействия независимой переменной) для двух групп. При этом мы получим:

Сверившись с таблицей значений t, мы можем прийти к следующим выводам: полученное нами значение t=0,53 меньше того, которое соответствует уровню достоверности 0,05 для 26 степеней свободы (h)= 28); следовательно, уровень вероятности для такого t будет выше 0,05 и нулевую гипотезу нельзя отбросить; таким образом, разница между двумя выборками недостоверна, т. е. они вполне могут принадлежать к одной популяции.

Сокращенно этот вывод записывается следующим образом:

t=0,53; h=28; р>0,05; недостоверно.

Как уже говорилось, поскольку объем выборок в данном случае невелик, а результаты опытной группы после воздействия не соответствуют нормальному распределению, лучше использовать непараметрический метод, например U-тест Манна-Уитни.

Однако наиболее полезным t-тест окажется для нас при проверке гипотезы о достоверности разницы средней между результатами опытной и контрольной групп после воздействия. Попробуйте сами найти для этих выборок значения и сделать соответствующие выводы.

Степени свободы

Для того чтобы свести к минимуму ошибки, в таблицах критических значений статистических критериев в общем количестве данных не учитывают те, которые можно вывести методом дедукции. Оставшиеся данные составляют так называемое число степеней свободы, т. е. то число данных из выборки, значения которых могут быть случайными.

Так, если сумма трех данных равна 8, то первые два из них могут принимать любые значения, но если они определены, то третье значение становится автоматически известным. Если, например, значение первого данного равно 3, а второго -1, то третье может быть равным только 4. Таким образом, в такой выборке имеются только две степени свободы. В общем случае для выборки в n данных существует п-1 степень свободы.

Если у нас имеются две независимые выборки, то число степеней свободы для первой из них составляет n1-1, а для второй — n2-1. А поскольку при определении достоверности разницы между ними опираются на анализ каждой выборки, число степеней свободы, по которому нужно будет находить критерий t в таблице, будет составлять (n1+n2)-2.

Если же речь идет о двух зависимых выборках, то в основе расчета лежит вычисление суммы разностей, полученных для каждой пары результатов (т.е., например, разностей между результатами до и после воздействия на одного и того же испытуемого). Поскольку одну (любую) из этих разностей можно вычислить, зная остальные разности и их сумму, число степеней свободы для определения критерия t будет равно n-1.


Метод Стьюдента для зависимых выборок

К зависимым выборкам относятся, например, результаты одной и той же группы испытуемых до и после воздействия независимой переменной. В нашем случае с помощью статистических методов для зависимых выборок можно проверить гипотезу о достоверности разницы между фоновым уровнем и уровнем после воздействия отдельно для опытной и для контрольной группы.

Для определения достоверности разницы средних в случае зависимых выборок применяется следующая формула:

где d — разность между результатами в каждой паре; Sd — сумма этих частных разностей; Sd2 — сумма квадратов частных разностей. Полученные результаты сверяют с таблицей t, отыскивая в ней значения, соответствующие n-1 степени свободы; n — это в данном случае число пар данных.

Перед тем как использовать формулу, необходимо вычислить для каждой группы частные разности между результатами во всех парах, квадрат каждой из этих разностей, сумму этих разностей и сумму их квадратов.

Необходимо произвести следующие операции:



Наши рекомендации