Прессование платы из слоев

Этот процесс представляет собой склеивание слоев многослойных печатных плат за счет расплавления и отверждения смолы прокладочных листов, находящихся в полуотвержденном состоянии. Прокладочные листы имеют такую же структуру, что и основания слоев: ту же основу связующего, тот же армирующий материал.

По сути, многослойная плата состоит из нескольких очень тонких внутренних слоев. До проведения прессования на медных поверхностях В и С были произведены печать и трав-

ление рисунка платы. Медные поверхности A и D, будучи внешними слоями многослойной платы, не обрабатывались, чтобы после прессования платы ее можно было завершить как двустороннюю. Слои A–B и C–D тесно скреплены посредством

тонких листов препрега В–С (не полностью отвержденная стеклоткань с эпоксидной пропиткой). Скрепление или прессование производится под действием температуры и давления в прессовом оборудовании. Расплавленная под действием температуры на несколько минут эпоксидная смола в составе листов препрега под давлением заполняет все открытые области между слоями платы. После этого смола полимеризуется до твердого состояния, в результате чего происходит «схватывание» и отверждение всех слоев. После прессования края платы подравниваются и пропитываются смолой. Затем следует процесс обработки платы как двусторонней: сверлят, очищают и металлизируют отверстия, где это необходимо—формируют межслойные контактные соединения.

После проведения металлизации внешних сторон на них вытравливают рисунок, а также наносят паяльные маски и облуживают или наносят финишное по-

крытие на монтажные поверхности.

Для успешного проведения операции прессования необходимо соблюдать чистоту и развитость (шероховатость) медных поверхностей. После прессования, если на поверхности внутренних слоев остались загрязнения, не удаленные в процессе ее подготовки, то могут возникнуть вздутия, пузыри и расслоения, приводящие к браку всей заготовки МПП. Чтобы обеспечить высокую прочность сцепления поверхности медных проводников с изолирующими межслойными материалами, необходимо повысить шероховатость, при этом наружный шероховатый слой медной поверхности должен быть достаточно прочным и твердым.

Нанесение защитной маски

Защитное покрытие печатных проводников серебром в настоящее время не применяется. У серебра обнаружено неприятное свойство: в условиях повышенной влажности под действием электрического поля происходит рост кристаллов-дендритов по поверхности и в глубину изоляционного основания печатной платы, что приводит к уменьшению электрической прочности изоляции.

Введение в конструкцию ПП паяльной маски является необходимым условием, т.к. обычная стеклоэпоксидная основа печатных плат не обладает достаточной теплостойкостью при температурах пайки (220-240 оС), и без паяльной маски за время, необходимое для проведения пайки, может происходить поверхностная деструкция материала диэлектрика. По методу формирования рисунка паяльные маски делятся на два типа:

1) Паяльные маски, рисунок которых формируется методом трафаретной печати. Как правило, это составы на эпоксидной основе, отверждаемые термически или ультрафиолетовым (УФ) излучением. При относительной дешевизне их недостатком является низкая разрешающая способность и необходимость использования сеткографического трафарета.

2) Паяльные маски, рисунок которых формируется фотолитографическим методом (фоторезистивные маски). Способ позволяет формировать маски любой сложности и в последнее время получил наибольшее распространение. Для этих целей применяются сухие и жидкие фоторезистивные материалы. Размеры окон в маске на платах 3-го и более высоких классов точности должны превышать размеры контактных площадок на величину от 0,05 до 0,1 мм.

Припой на контактные площадки наносится либо электроосаждением (с последующим оплавлением для снятия пористости осажденного металла) либо непосредственно окунанием платы, защищенной маской, в расплавленный припой. Применяются и другие варианты покрытий, обеспечивающие хорошую паяемость:

а) Иммерсионная или химическая металлизация золотом, серебром, палладием. Применяется в ПП для аппаратуры ответственного назначения. Иммерсионный слой металла имеет способность самоограничения при росте и обычно очень тонкий (0,05-0,2 мкм).

б) Органические покрытия, связанные с обработкой меди (составы на основе бензимидазола или имидазола).

Если на плате имеются контакты электрического соединителя непосредственного контактирования, на эти контакты должно наноситься покрытие, дающее стабильное низкое переходное сопротивление и обладающее высокой износоустойчивостью. В таких случаях применяется многослойное покрытие, в верхнем слое которого наносится золото или палладий. Толщина слоя от 0,5 до 2 мкм. Для подслоя золота обычно используют никель, что предохраняет медь от миграции через пористый золотой слой на поверхность.

Проявление фоторезиста

Жидкие позитивные фоторезисты на основе диазосоединений имеют повышенную разрешающую способность, химическую стойкость, в них отсутствует темновое дубление. Нано­сят жидкие фоторезисты окунанием, центрифугированием, накат­кой валками, разбрызгиванием. При покрытии окунанием заго­товки погружаются в кювету с фоторезистом и вытягиваются с постоянной скоростью (10-50 см/мин). Толщина слоя опре­деляется вязкостью, скоростью вытягивания и колеблется от 4 до 8 мкм. Способ обеспечивает двустороннее нанесение фоторезиста. Недостатком является неравномерность нанесенного слоя. Применение центри­фугирования и накатки валками приводит к повышению равно­мерности наносимых слоев. Валковые кон­вейерные установки имеют секции инфракрасной сушки резиста.

Сухие пленочные фоторезисты (СПФ) представляют собой структуру, состоящую из свето­чувствительного слоя, который помещается между защитной поли­этиленовой и светопроницаемой лавсановой пленками. Типичная толщина СПФ 20, 40 и 60 мкм, защитных СПФЗ 90, 110, 130 мкм. Тонкие слои СПФ применяют в качестве маски при травлении меди с пробельных мест, сред­ние - для создания рисунка при нанесении слоя металлизации, а толстые - для защиты отверстий с металлизацией при травле­нии. Фоторезисты наносят на платы валковым методом при нагреве до 105-120 °С и плотно прикатывают к поверхно­сти заготовки для удаления воздушных включений. Реализующие этот метод установки называются ламинаторами. Они снабжены терморегуляторами, тарированными устройствами прижима по­дающих валков, устройствами для обеспечения давления на заготовку и обрезания фоторезиста после его нанесения.

Экспонирование предназначено для инициирования фотохими­ческих реакций в фоторезистах. Оно проводится в установках, состоящих из источников света, работающих в ультрафиолетовой области, рефлекто­ров и коллиматоров. Для плотного прилегания фотошаблонов к заготовкам плат используют рамы, оснащенные специальными откачными системами для создания ва­куума.

Для проявления СПФ используют два вида установок: камер­ные для мелкосерийного производства и конвейерные для серий­ного производства. Камерные установки имеют насос для подачи проявителя под давлением, систему струйной промывки, змеевики охлаждения проявителя, таймеры, систему терморегулирования и устрой­ства фильтрации проявителя. Конвейерные уста­новки имеют зоны загрузки, первичного проявления, допроявления и промывки плат. Установки оснащены регуляторами скорости конвейера и давления жидкости, системами охлаж­дения и терморегулирования, основными и вспомогательными на­сосами фильтрации жидкости и отстойниками промывных вод.

После проявления оставшийся фоторезист должен быть твер­дым, блестящим, сплошным покрытием на поверхности заготов­ки с хорошей адгезией к ней, без проколов и других дефектов.

Обслуживание и гальваника

при производстве ПП приме­няется для усиления слоя химической меди, нанесения металли­ческого резиста (например, олово - свинец толщиной 8-20 мкм с целью предохранения проводящего рисунка при травлении плат, защиты его от коррозии и обеспечения хорошей паяемости), соз­дания на части проводящего рисунка (например, на концевых печатных контактах) специальных покрытий (палладий, золото, родий и т. п.) толщиной 2-5 мкм. Основой для гальванической металлизации является водный раствор солей металла, содержащий осаждаемый материал в виде положительно заряженных ионов. Необходимые для восстановления электроны поступают от внешнего источника постоянного тока. Под действием внешнего напряжения ионы металла движутся к катоду, присоединяют электроны и осаждаются на нем как нейтральные атомы. Примером может служить восстановление меди: Cu2+ + 2e- → Cu. Катодом является предмет, подлежащий покрытию, например ПП. В качестве анода преимущественно используют осаждаемый материал, реже – не растворяющийся платиновый или стальной электрод. Процессы, происходящие на аноде и катоде, имеют сложный характер. Их определяют реакции переноса, проникновения и адсорбции, которые, в свою очередь, зависят от концентрации компонентов ванны и температуры.

Заготовки плат, закрепленные на специальных подвесках - токоподводах, помещают в гальвани­ческую ванну с электролитом. Режим электрохимической металлизации вы­бирают таким образом, чтобы при высокой производительности были обеспечены равномерность толщины покрытия и его адгезия.

Равномерность толщины осажденных слоев зависит от: 1) габаритных размеров металлизируемых плат (с увеличе­нием ПП равномерность покрытий снижается, что может быть частич­но скомпенсировано увеличением расстояния между анодами); 2) диаметров металлизируемых отверстий (отношение диа­метров к толщине платы должно быть не менее 1/3); 3) располо­жения плат в ванне (для улучшения равномерности платы раз­мещают симметрично и параллельно анодам, площадь которых должна в 2-3 раза превышать площадь металлизации при рас­стоянии между электродами не менее 150 мм); 4) оптимальной плотности тока (при низких значениях уменьшается толщина покрытия в центре пла­ты, при высоких происходит утолщение покрытия на углах и кромках платы); 5) наличия специальных экранов между электродами.

Адгезия гальванического покрытия зависит от качества подго­товки поверхности под металлизацию, длительности перерыва между подготовкой поверхности и нанесением покрытия, от со­блюдения режимов процесса.

Для меднения ПП применяют различные электролиты. Рекомендуют для предварительной металлиза­ции борфтористоводородный электролит следующего состава (г/л): Cu(BF4)2 – 230-250, HBF4 – 5-15, Н3ВО3 – 15-40. Процесс ведут при температуре 20±5 °С, плотности тока 3-4 А/дм2 скорости осаждения 25-30 мкм/ч. Более пластичные и равномерные осадки получаются в серно­кислых электролитах. Для улучшения рассеивающей способности в электролит добавляются выравнивающие добавки, а процесс ведут непрерывной подачей свежего раствора меднения непосредственно в сквозные отверстия. Сернокислый электролит имеет состав (г/л); CuS04-5 H20 – 100-200, H2S04 – 150-180, NaCl - 0,03-0,06.

Электролитический сплав олово-свинец должен иметь состав, приближающийся к эвтектическому, что обеспечит последующее оплавление при минимальной температуре и хорошую паяемость ПП. Это достигается выбором оптимального режима осаждения и строгим его поддержанием. Содержание олова в осадке возрас­тает при понижении плотности тока, увеличении количества вво­димых добавок, снижении температуры электролита, увеличении олова в электролите и сильном его перемешивании.

Повышение объемов производства и требований к качеству ПП, усложнение аппаратуры и ее микроминиатюризация требуют развития перспективных методов электрохимической металлиза­ции и производительного технологического оборудования. Одним из эффективных путей улучшения качества покрытий является использование нестационарных режимов электролиза. Осаждение металла в этом случае проводится под действием периодических токов - импульсного, реверсивного, произвольной формы различ­ной частоты и скважности. Под действием реверсивного тока про­исходит сглаживание микрорельефа покрытия, повышается его равномерность по поверхности платы и в монтажных отверстиях. Это объясняется тем, что во время прямого импульса происходит осаждение металла, а во время обратного - преимущественное растворение выступающих участков. Одновременно снижаются внутренние напряжения в покрытиях, повышается их пластич­ность.

При импульсном токе измельчается структура покрытия (кри­сталл растет во время импульса тока и пассивируется во время паузы), уменьшается пористость, повышается электропроводность покрытия вследствие совершенства структуры и уменьшения включаемых в осадок примесей. Наибольшей эффектив­ностью обладает оборудование, обеспечивающее программное ведение процесса. Оно позволяет на основании модели ТП автоматически изменять форму тока, его амплитуду, частоту, скважность и все временные параметры.

Наши рекомендации