Физический уровень 100Base-FX - многомодовое оптоволокно
Физический уровень PHY ответственен за прием данных в параллельной форме от MAC-подуровня, трансляцию их в один (TX или FX) или три последовательных потока бит с возможностью побитной синхронизации и передачу их через разъем на кабель. Аналогично, на приемном узле уровень PHY должен принимать сигналы по кабелю, определять моменты синхронизации бит, извлекать биты из физических сигналов, преобразовывать их в параллельную форму и передавать подуровню MAC.
Структура физического уровня 100Base-FX представлена на рисунке 1.8.
Рисунок 15.6. Физический уровень PHY FX
Эта спецификация определяет работу протокола Fast Ethernet по многомодовому оптоволокну в полудуплексном и полнодуплексном режимах на основе хорошо проверенной схемы кодирования и передачи оптических сигналов, использующейся уже на протяжении ряда лет в стандарте FDDI. Как и в стандарте FDDI, каждый узел соединяется с сетью двумя оптическими волокнами, идущими от приемника (Rx) и от передатчика (Tx).
Между спецификациями PHY FX и PHY TX есть много общего, поэтому общие для двух спецификаций свойства будут даваться под обобщенным названием PHY FX/TX.
Метод кодирования 4B/5B
10 Мбит/с версии Ethernet используют манчестерское кодирование для представления данных при передаче по кабелю. Метод кодирования 4B/5B определен в стандарте FDDI, и он без изменений перенесен в спецификацию PHY FX/TX. При этом методе каждые 4 бита данных MAC-подуровня (называемых символами) представляются 5 битами. Использование избыточного бита позволяет применить потенциальные коды при представлении каждого из пяти бит в виде электрических или оптических импульсов. Потенциальные коды обладают по сравнению с манчестерскими кодами более узкой полосой спектра сигнала, а, следовательно, предъявляют меньшие требования к полосе пропускания кабеля. Однако, прямое использование потенциальных кодов для передачи исходных данных без избыточного бита невозможно из-за плохой самосинхронизации приемника и источника данных: при передаче длинной последовательности единиц или нулей в течение долгого времени сигнал не изменяется, и приемник не может определить момент чтения очередного бита.
При использовании пяти бит для кодирования шестнадцати исходных 4-х битовых комбинаций, можно построить такую таблицу кодирования, в которой любой исходный 4-х битовый код представляется 5-ти битовым кодом с чередующимися нулями и единицами. Тем самым обеспечивается синхронизация приемника с передатчиком. Так как исходные биты MAC-подуровня должны передаваться со скоростью 100Мбит/c, то наличие одного избыточного бита вынуждает передавать биты результирующего кода 4B/5B со скоростью 125 Мбит/c, то есть межбитовое расстояние в устройстве PHY составляет 8 наносекунд.
Так как из 32 возможных комбинаций 5-битовых порций для кодирования порций исходных данных нужно только 16, то остальные 16 комбинаций в коде 4В/5B используются в служебных целях.
Наличие служебных символов позволило использовать в спецификациях FX/TX схему непрерывного обмена сигналами между передатчиком и приемником и при свободном состоянии среды, что отличает их от спецификации 10Base-T, когда незанятое состояние среды обозначается полным отсутствием на ней импульсов информации. Для обозначения незанятого состояния среды используется служебный символ Idle (11111), который постоянно циркулирует между передатчиком и приемником, поддерживая их синхронизм и в периодах между передачами информации, а также позволяя контролировать физическое состояние линии (рисунок 1.9).
Рисунок 15.7. Обмен символами Idle при незанятом состоянии среды
Существование запрещенных комбинаций символов позволяет отбраковывать ошибочные символы, что повышает устойчивость работы сетей с PHY FX/TX.
Для отделения кадра Ethernet от символов Idle используется комбинация символов Start Delimiter (пара символов JK), а после завершения кадра перед первым символом Idle вставляется символ T (рисунок 1.10).
Рисунок 15.8. Непрерывный поток данных спецификаций PHY FX/TX
Передача 5-битовых кодов по линии методом NRZI
После преобразования 4-битовых порций MAC-кодов в 5-битовые порции PHY их необходимо представить в виде оптических или электрических сигналов в кабеле, соединяющем узлы сети. Спецификации PHY FX и PHY TX используют для этого различные методы физического кодирования - NRZI и MLT-3 соответственно. Эти же методы определены в стандарте FDDI для передачи сигналов по оптоволокну (спецификация PMD) и витой паре (спецификация TP-PMD).
Рассмотрим метод NRZI - Non Return to Zero Invert to ones - метод без возврата к нулю с инвертированием для единиц. Этот метод представляет собой модификацию простого потенциального метода кодирования, называемого Non Return to Zero (NRZ), когда для представления 1 и 0 используются потенциалы двух уровней. В методе NRZI также используется два уровня потенциала сигнала, но потенциал, используемый для кодирования текущего бита зависит от потенциала, который использовался для кодирования предыдущего бита (так называемое дифференциальное кодирование). Если текущий бит имеет значение 1, то текущий потенциал представляет собой инверсию потенциала предыдущего бита, независимо от его значения. Если же текущий бит имеет значение 0, то текущий потенциал повторяет предыдущий.
Из описания метода NRZI видно, что для обеспечения частых изменений сигнала, а значит и для поддержания самосинхронизации приемника, нужно исключить из кодов слишком длинные последовательности нулей. Коды 4B/5B построены так, что гарантируют не более трех нулей подряд при любом сочетании бит в исходной информации. На рисунке 15.9 приведен пример кодирования последовательности бит методами NRZ и NRZI.
Рисунок 15.9. Сравнение методов кодирования NRZ и NRZI
Основное преимущество NRZI кодирования по сравнению с NRZ кодированием в более надежном распознавании передаваемых 1 и 0 на линии в условиях помех.