Кинематическая точность передачи
Для обеспечения кинематической точности предусмотрены нормы, ограничивающие кинематическую погрешность передачи и кинематическую погрешность колеса.
Кинематической точностью передачи FК.П.П. называют разность между действительным 2 и номинальным 3 углами поворота ведомого зубчатого колеса 2 передачи, выраженную в линейных величинах длиной дуги его делительной окружности, т.е. FК.П.П.=((2-(3)(r, где r - радиус делительной окружности ведомого колеса; (3=(1(z1/z2; (1 - действительный угол поворота ведущего колеса; z1 и z2 - числа зубьев соответственно ведущего 1 и ведомого 2 колёс. Наибольшая кинематическая погрешность передачи F'ir определяется наибольшей алгебраической разностью значений кинематической погрешности передачи за полный цикл изменения относительного положения зубчатых колёс.
Кинематической погрешностью зубчатого колеса FК.П.П. называют разность между действительным и номинальным (расчётным) углами поворота зубчатого колеса на его рабочей оси, ведомого точным (измерительным) колесом при нормальном взаимном положении осей вращения этих колёс; её выражают в линейных величинах длиной дуги делительной окружности (рис. 2.2.). Под рабочей осью понимают ось колеса, вокруг которой оно вращается в передаче. При назначении требований к точности колеса относительно другой оси (например, оси отверстия), которая может не совпадать с рабочей осью, погрешность колеса будет другой, что необходимо учитывать при установлении точности передачи. Все точные требования установлены для колёс, находящихся на рабочих осях.
Наибольшая кинематическая погрешность зубчатого колеса F'ir - наибольшая алгебраическая разность значений кинематической погрешности зубчатого колеса в пределах угла (полн полного оборота (см. рис. 2.2.). Эта погрешность ограничивается допуском на кинематическую погрешность колеса F'i (значения в стандарте не приведены). Допуск на кинематическую погрешность зубчатого колеса F'i следует определять как сумму допуска на накопленную погрешность шага колеса Fp в зависимости от степени по нормам кинематической точности и допуска на погрешность профиля зуба ff, назначаемого в зависимости от степени точности по нормам плавности. Допускается нормировать кинематическую погрешность колеса на k шагах - F'ikr. Эта погрешность ограничивается допуском F'ik.
Если кинематическая погрешность колёс при контроле их на рабочей оси не превышает допускаемых значений и требование селективной сборки не выдвигается, то контроль кинематической точности передачи не обязателен. Если контролируемая кинематическая точность передачи соответствует требованиям стандарта, то контроль кинематической точности колёс не обязателен.
45)ПЛАВНОСТЬ РАБОТЫ ПЕРЕДАЧИ
Эта характеристика передачи определяется параметрами, погрешности которых многократно (циклически) проявляются за оборот зубчатого колеса и также составляют часть кинематической погрешности. Аналитически или с помощью анализаторов кинематическую погрешность можно представить в виде спектра гармонических составляющих, амплитуда и частота которых зависят от характера составляющих погрешностей. Например, отклонение шага зацепления (основного шага) вызывают колебания кинематической погрешности с зубцовой частотой, равной частоте входа в зацепление зубьев колёс.
Циклический характер погрешностей, нарушающих плавность работы передачи, и возможность гармонического анализа дали основание определять и нормировать эти погрешности по спектру кинематической погрешности. Под циклической погрешностью передачи fzk0r и зубчатого колеса fzkr понимают удвоенную амплитуду гармонической составляющей кинематической погрешности соответственно передачи или колеса. Для ограничения циклической погрешности установлены допуски: fzk0 - на циклическую погрешность передачи и fzk - на циклическую погрешность зубчатого колеса. Допуски fzk0 и fzk для любой частоты определяются по формуле
Fzk0=fzk=(k-0,6ц+0,13)(Fr, (3.1.)
где кц - частота циклов за оборот зубчатого колеса; Fr - допуск на радиальное биение зубчатого венца той же степени точности, что и fzk.
Анализ формулы (3.1.) показывает, что с увеличением частоты кц допуски fzk0 и fzk уменьшаются. Это подтверждается опытом производства и эксплуатации быстроходных передач. Для ограничения циклической погрешности с частотой повторения, равной частоте хода зубьев в зацепление fzz0r и fzzr, установлены допуски на циклическую погрешность зубцовой частоты в передаче fzz0 и колеса fzz, причём fzz=0,6fzz0.Эти допуски зависят от частоты циклической погрешности кц (равной числу зубьев колёс z), степени точности, коэффициента осевого перекрытия и модуля m. .
Циклическая погрешность зубчатого колеса возникает вследствие биения червяка делительной пары станка, биения и перекоса фрезы и т.д. Погрешности станка вызывают также волнистость боковых поверхностей зубьев косозубых колёс и погрешность профиля прямозубых колёс, которые являются главными причинами неравномерного вращения передачи.
Циклические погрешности обычно вызывают повышение шумовых характеристик, причём уровень шумовой мощности увеличивается с увеличением частоты вращения передачи. Чтобы повысить плавность передачи, целесообразно повышать точность зуборезного инструмента и червяка, сопряжённого с делительным колесом станка, а также применять шевингование и зубохонингование колёс.
46)Нормы бокового зазора зубчатых колёс
В большинстве зубчатых передач для правильной работы необходимо обеспечить боковой зазор. В передачах с регулируемыми осями зазор может настраиваться изменением межосевого расстояния. В передачах с постоянным межосевым расстоянием зазор обеспечивается при нарезании зубьев колёс. Для этого на параметр, характеризующий толщину зуба, задаётся поле допуска с двумя минусами. Таким образом в передаче гарантируется некий зазор между jnmin зубьями. Величина бокового зазора и допуск на боковой зазор (толщину зуба) задаётся в виде сопряжния (А, B, C, D, E, H). А - самый грубый вид сопряжения, Н - самый точный вид сопряжения ( минимальный гарантированный зазор равен нулю). Вид сопряжения указывается в степени точности колеса (например, 8-В)
Существует несколько разных геометрических параметров, которыми можно выразить толщину зуба и следовательно боковой зазор в передаче:
толщина зуба по хорде Sc;
длина общей нормали W;
размер по шарикам M;
смещение исходного контура EH;
межосевое расстояние в беззазорном зацеплении с колесом-эталоном;
Эти параметры в пределах одного колеса связаны строгими геометрическими отношениями. Т.е. зная один параметр можно вычислить любой другой.
Отклонение каждого размера задаётся двумя величинами: наименьшим отклонением (соответствует верхнему пределу поля допуска, т.е. минимальному зазору в передаче) и допуском на размер ( соответствует нижнему пределу поля допуска, т.е. максимальному зазору в передаче)
для толщины зуба по хорде задаётся наименьшее отклонение толщины зуба Ecs и допуск на толщину зуба Тс
для длины общей нормали задаётся наименьшее отклонение средней длины общей нормали EWms и допуск на среднюю длину общей нормали TWm (см. ГОСТ1643 табл. 16, 17,18). "Средняя" здесь означает, что при контроле оценивается среднее арифметическое значение нескольких измерений на разных зубьях колеса.
для размера по шарикам допуск определяются пересчётом допусков на длину общей нормали EWms иTWm
для смещения исходного контура задаётся наименьшее дополнительное смещение исходного контура EH и допуск на смещение исходного контура TH
Толщина по хорде.
Измерение толщины зуба по хорде - самый распространённый на практике способ измерения. Сущность метода состоит в измерении длины хорды между левой и правой сторонами зуба на заданной высоте. Разумеется толщину зуба можно измерять в бесконечном количестве мест по высоте зуба, но на практике в большинстве случаев используют измерение толщины зуба по постоянной хорде. Для измерения пользуются специальными приборами - хордовыми зубомерами (штангензубомеры и индикаторные зубомеры)
47)КОНТАКТ ЗУБЬЕВ В ПЕРЕДАЧЕ
Для повышения износостойкости и долговечности зубчатых передач необходимо, чтобы полнота контакта сопряжённых боковых поверхностей зубьев колёс была наибольшей. При неполном и неравномерном прилегании зубьев уменьшается несущая площадь поверхности их контакта, неравномерно распределяются контактные напряжения и смазочный материал, что приводит к интенсивному изнашиванию зубьев. Для обеспечения необходимой полноты контакта зубьев в передаче установлены наименьшие размеры суммарного пятна контакта.
Суммарным пятном контакта называют часть активной боковой поверхности зуба колеса, на которой располагаются следы прилегания зубьев парного колеса (следы надиров или краски) в собранной передаче после вращения под нагрузкой, устанавливаемой конструктором. Пятно контакта (рис. 4.1.) определяется относительными размерами (в процентах): по длине зуба - отношением расстояния а между крайними точками следов прилегания за вычетом разрывов с, превышающих модуль в мм, к длине зуба b, т.е.
[(a-c)/b](100%; по высоте зуба - отношением средней (по длине зуба) высоты прилегания hm к высоте зуба соответствующей активной боковой поверхности hp, т.е. (hm/hp)(100%.
В ГОСТ 1643-81 введено понятие мгновенное пятно контакта, определяемое после поворота колеса собранной передачи на полный оборот при лёгком торможении.
Полнота контакта зависит от погрешностей установки заготовки на станке (её торцевого биения), неточности станка (непараллельности направления хода фрезерного суппорта оси вращения стола и его перекоса), а для косозубых колёс также от погрешностей винта подачи зуборезного станка. Притирка и приработка зубьев сопряжённых колёс улучшают их контакт.
На полноту контакта влияют погрешности формы зубьев и погрешности их взаимного расположения в передаче.
При соответствии суммарного или мгновенного пятна контакта требованиям стандарта контроль по другим показателям, определяющим контакт зубьев в передаче, не является необходимым. Допускается определять пятна контакта с помощью измерительного колеса.
48)ВИДЫ СОПРЯЖЕНИЙ ЗУБЬЕВ КОЛЁС В ПЕРЕДАЧЕ
Для устранения возможного заклинивания при нагреве передачи, обеспечения условий протекания смазочного материала и ограничения мёртвого хода при реверсировании отсчётных и делительных реальных передач они должны иметь боковой зазор jп (между нерабочими профилями зубьев колёс). Этот зазор необходим также для компенсации погрешностей изготовления и монтажа передачи и для устранения удара по нерабочим профилям, который может быть вызван разрывом контакта рабочих профилей вследствие динамических явлений. Такая передача является однопрофильной (контакт зубьев колёс происходит по одним рабочим профилям). Только передача, изготовленная точно по номинальным параметрам (теоретическая зубчатая передача) является беззазорной двухпрофильной (контакт зубьев колёс происходит одновременно по правым и левым боковым профилям) и имеет постоянное передаточное отношение i=z1/z2=(2/(1, где z1 и z2 - число зубьев колёс, (1 и (2 - угловые скорости колёс.
Для удовлетворения требований различных отраслей промышленности, независимо от степени точности изготовления колёс передачи, предусмотрено шесть видов сопряжений, определяющих различные значения jmin (рис. 5.1.). Сопряжения А, В, С, D, Е, Н применяют соответственно для степеней точности по нормам плавности работы: 3-12; 3-11; 3-9; 3-8; 3-7; 3-7.
Установлено шесть классов отклонений межосевого расстояния, обозначаемых в порядке убывания точности римскими цифрами от 1 до 6. Гарантированный боковой зазор в каждом сопряжении обеспечивается при соблюдении предусмотренных классов отклонений межосевого расстояния (для сопряжений Н и Е - 2 класса, для сопряжений D, С, В и А - классов 3, 4, 5 и 6 соответственно). Соответствие видов сопряжений и указанных классов допускается изменять.
На боковой зазор установлен допуск Тjn, определяемый разностью между наибольшим и наименьшим зазорами. По мере увеличения бокового зазора увеличивается допуск Тjn. Установлено восемь видов допуска Тjn на боковой зазор: x, y, z, a, b, c, d, h. Видам сопряжений Н и Е соответствует вид допуска h, видам сопряжений D, C, B и А - соответственно виды допусков d, c, b и а. Соответствие видов сопряжений и видов допусков Тjn допускается изменять, используя при этом и виды допуска z, y и х. В результате увеличения температуры при работе передачи размеры колёс увеличиваются в большей степени, чем расстояние между их осями, поэтому боковой зазор уменьшается.
Погрешности изготовления и монтажа колёс учитывают при определении наибольшего бокового зазора. Разность между наибольшим и гарантированным зазорами должна быть достаточной для компенсации погрешностей изготовления и монтажа колёс. Боковой зазор обеспечивают путём радиального смещения исходного контура рейки (зуборезного инструмента) от его номинального положения в тело колеса. Под номинальным положением исходного контура на зубчатом колесе, лишённом погрешностей, при котором номинальная толщина зуба соответствует плотному двухпрофильному зацеплению.
49)Классификация средств измерения
Средства измерения принято классифицировать по виду, принципу действия и метрологическому назначению.
Различают следующие виды средств измерений: меры, измерительные устройства, которые подразделяются на измерительные приборы и измерительные преобразователи; измерительные установки и измерительные системы.
По конструктивному устройству измерительные приборы делят на механические, оптические, электрические и пневматические и др.
Универсальные измерительные приборы применяют в контрольно-измерительных лабораториях всех типов производств, а также в цехах единичных и мелкосерийных производств.
Универсальные измерительные приборы подразделяются:
на механические:
- простейшие инструменты - проверочные измерительные линейки, щупы, образцы шероховатости поверхности;
- Штангенинструменты - штангенциркуль, штангенглубиномер, штан-генрейсмас, штангензубомер;
- микрометрические инструменты - Микрометр, микрометрический нутромер, микрометрический глубиномер;
- приборы с зубчатой передачей - индикаторы часового типа; Рычажно-механические - миниметры, рычажные скобы;
оптические:
- вертикальные и горизонтальные оптиметры, малый и большой инструментальные микроскопы, универсальный микроскоп, концевая машина, проекторы, интерференционные приборы;
пневматические: длинномеры (ротаметры);
электрические: электроконтактные измерительные головки, индуктивные приборы, профилографы, профилометры, кругломеры.
Метрологические характеристики измерительных средств
Основными нормируемыми характеристиками измерительных средств для технических измерений являются:
- диапазон измерений - область значений измеряемой величины, для которой нормированы пределы погрешности прибора;
- диапазон показаний (измерений по шкале) - область значений шкалы, ограниченная ее начальным и конечным значениями; например для вертикального оптиметра диапазон показаний 0,2 мм, пределы показаний (начальное и конечное значения шкалы) ±0,1 мм.
Диапазон измерений меньше или равен диапазону показаний.
Пределы измерения - наибольшее или наименьшее значение диапазона измерения.
Цена деления шкалы - разность значений величин, соответствующих двум соседним отметкам шкалы.
Длина (интервал) деления шкалы - расстояние между осями двух соседних отметок шкалы.
Чувствительность - свойство, отражающее способность реагировать на изменение измеряемой величины.
Стабильность - свойство, отражающее постоянство во времени метрологических показателей.
Основная метрологическая характеристика измерительного средства - погрешность измерительного средства или инструментальная погрешность средства имеет определяющее значение для наиболее распространенных технических измерений, включающих в себя измерительные средства для измерения длин и угловых размеров. В зависимости от условий использования измерительных средств различают основную и дополнительную погрешность.
Основной погрешностью средства измерений называют погрешность при использовании средства измерения в нормальных условиях, указываемых в стандартах, технических условиях, паспортах и т. п.
Пределы допускаемой основной погрешности задают в виде абсолютных, относительных или приведенных погрешностей измерительного средства.
ДОПОЛНИТЕЛЬНЫЕ ВОПРОСЫ!!!!!!!!!!!!!!
50. Расшифровать обозначение: допусков размеров, формы, расположения, шероховатости, резьбы, шлицевой посадки, зубчатого колеса.
Допуском размера называется разность между наибольшим и наименьшим предельными размерами или алгебраическая разность между верхним и нижним отклонениями. Допуск обозначается IT (International Tolerance) или TD - допуск отверстия и Td - допуск вала. Допуск формы (T) - наибольшее допустимое значение отклонения формы.
Поле допуска формы -область в пространстве или на плоскости, внутри которой должны находиться все точки реального рассматриваемого элемента в пределах нормируемого участка
Допуск расположения – предел, ограничивающий допускаемое значение отклонения расположения поверхностей.
Поле допуска расположения характеризуется областью в пространстве или заданной плоскости, внутри которой должен находиться прилегающий элемент или ось центр, плоскость симметрии в пределах нормируемого участка.
51. Точность в машиностроении.
Точностью изделия в машиностроении называют степень соответствия заранее установленному образцу. Под точностью детали понимается степень соответствия реальной детали, полученной механической обработкой заготовки, по отношению к детали, заданной чертежом и техническими условиями на изготовление, т.е. соответствие формы, размеров, взаимного расположения обработанных поверхностей, шероховатости поверхности обработанной детали требованиям чертежа. Следовательно, точность понятие комплексное, включающее всестороннюю оценку соответствия реальной детали по отношению к заданной.
52. Параметры геометрической точности элементов деталей,
Размеры,форма,расположение поверхностей и осей, волнистость и шероховатость.
Разл номинальные и действительные параметры. Номинальные зад раб чертежом, а действ-е получаются после изготовления и измерения и имеют погрешность(отличие действительных р-ров от номинальных). Чем меньше погр-то тем выше точность!!
53. Основные причины возникновения погрешностей обработки.
Погрешность оборудования
Приспособлений
Инструмента
Однородности материала
Измер-го инструмента
Погрешность рабочего
54. Достоинства взаимозаменяемого производства.