Нормальная форма бойса-кодда
Рассмотрим следующий пример схемы отношения:
СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, СОТР_ИМЯ, ПРО_НОМЕР, СОТР_ЗАДАН)Возможные ключи:
СОТР_НОМЕР, ПРО_НОМЕРСОТР_ИМЯ, ПРО_НОМЕРФункциональные зависимости:
СОТР_НОМЕР --> CОТР_ИМЯСОТР_НОМЕР --> ПРО_НОМЕРСОТР_ИМЯ --> CОТР_НОМЕРСОТР_ИМЯ --> ПРО_НОМЕРСОТР_НОМЕР, ПРО_НОМЕР --> CОТР_ЗАДАНСОТР_ИМЯ, ПРО_НОМЕР --> CОТР_ЗАДАНВ этом примере мы предполагаем, что личность сотрудника полностью определяется как его номером, так и именем (это снова не очень жизненное предположение, но достаточное для примера).
В соответствии с определением 7~ отношение СОТРУДНИКИ-ПРОЕКТЫ находится в 3NF. Однако тот факт, что имеются функциональные зависимости атрибутов отношения от атрибута, являющегося частью первичного ключа, приводит к аномалиям. Например, для того, чтобы изменить имя сотрудника с данным номером согласованным образом, нам потребуется модифицировать все кортежи, включающие его номер.
Определение 8: Детерминант
Детерминант - любой атрибут, от которого полностью функционально зависит некоторый другой атрибут.
Определение 9: Нормальная форма Бойса-Кодда
Отношение R находится в нормальной форме Бойса-Кодда (BCNF) в том и только в том случае, если каждый детерминант является возможным ключом.
Очевидно, что это требование не выполнено для отношения СОТРУДНИКИ-ПРОЕКТЫ. Можно произвести его декомпозицию к отношениям СОТРУДНИКИ и СОТРУДНИКИ-ПРОЕКТЫ:
СОТРУДНИКИ (СОТР_НОМЕР, СОТР_ИМЯ)Возможные ключи:
СОТР_НОМЕР СОТР_ИМЯФункциональные зависимости:
СОТР_НОМЕР --> CОТР_ИМЯСОТР_ИМЯ --> СОТР_НОМЕРСОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР, СОТР_ЗАДАН)Возможный ключ:
СОТР_НОМЕР, ПРО_НОМЕРФункциональные зависимости:
СОТР_НОМЕР, ПРО_НОМЕР --> CОТР_ЗАДАНВозможна альтернативная декомпозиция, если выбрать за основу СОТР_ИМЯ. В обоих случаях получаемые отношения СОТРУДНИКИ и СОТРУДНИКИ-ПРОЕКТЫ находятся в BCNF, и им не свойственны отмеченные аномалии.
Четвертая нормальная форма
Рассмотрим пример следующей схемы отношения:
ПРОЕКТЫ (ПРО_НОМЕР,ПРО_СОТР, ПРО_ЗАДАН)Отношение ПРОЕКТЫ содержит номера проектов, для каждого проекта список сотрудников, которые могут выполнять проект, и список заданий, предусматриваемых проектом. Сотрудники могут участвовать в нескольких проектах, и разные проекты могут включать одинаковые задания.
Каждый кортеж отношения связывает некоторый проект с сотрудником, участвующим в этом проекте, и заданием, который сотрудник выполняет в рамках данного проекта (мы предполагаем, что любой сотрудник, участвующий в проекте, выполняет все задания, предусмотренные этим проектом). По причине сформулированных выше условий единственным возможным ключом отношения является составной атрибут ПРО_НОМЕР, ПРО_СОТР, ПРО_ЗАДАН, и нет никаких других детерминантов. Следовательно, отношение ПРОЕКТЫ находится в BCNF. Но при этом оно обладает недостатками: если, например, некоторый сотрудник присоединяется к данному проекту, необходимо вставить в отношение ПРОЕКТЫ столько кортежей, сколько заданий в нем предусмотрено.
Определение 10: Многозначные зависимости
В отношении R (A, B, C) существует многозначная зависимость R.A -->> R.B в том и только в том случае, если множество значений B, соответствующее паре значений A и C, зависит только от A и не зависит от С.
В отношении ПРОЕКТЫ существуют следующие две многозначные зависимости:
ПРО_НОМЕР -->> ПРО_СОТРПРО_НОМЕР -->> ПРО_ЗАДАНЛегко показать, что в общем случае в отношении R (A, B, C) существует многозначная зависимость R.A -->> R.B в том и только в том случае, когда существует многозначная зависимость R.A -->> R.C.
Дальнейшая нормализация отношений, подобных отношению ПРОЕКТЫ, основывается на следующей теореме:
Теорема Фейджина
Отношение R (A, B, C) можно спроецировать без потерь в отношения R1 (A, B) и R2 (A, C) в том и только в том случае, когда существует MVD A -->> B C.
Под проецированием без потерь понимается такой способ декомпозиции отношения, при котором исходное отношение полностью и без избыточности восстанавливается путем естественного соединения полученных отношений.
Определение 11: Четвертая нормальная форма
Отношение R находится в четвертой нормальной форме (4NF) в том и только в том случае, если в случае существования многозначной зависимости A -->> B все остальные атрибуты R функционально зависят от A.
В нашем примере можно произвести декомпозицию отношения ПРОЕКТЫ в два отношения ПРОЕКТЫ-СОТРУДНИКИ и ПРОЕКТЫ-ЗАДАНИЯ:
ПРОЕКТЫ-СОТРУДНИКИ (ПРО_НОМЕР, ПРО_СОТР)ПРОЕКТЫ-ЗАДАНИЯ (ПРО_НОМЕР, ПРО_ЗАДАН)Оба эти отношения находятся в 4NF и свободны от отмеченных аномалий.
Пятая нормальная форма
Во всех рассмотренных до этого момента нормализациях производилась декомпозиция одного отношения в два. Иногда это сделать не удается, но возможна декомпозиция в большее число отношений, каждое из которых обладает лучшими свойствами.
Рассмотрим, например, отношение
СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ (СОТР_НОМЕР, ОТД_НОМЕР, ПРО_НОМЕР)Предположим, что один и тот же сотрудник может работать в нескольких отделах и работать в каждом отделе над несколькими проектами. Первичным ключом этого отношения является полная совокупность его атрибутов, отсутствуют функциональные и многозначные зависимости.
Поэтому отношение находится в 4NF. Однако в нем могут существовать аномалии, которые можно устранить путем декомпозиции в три отношения.
Определение 12: Зависимость соединения
Отношение R (X, Y, ..., Z) удовлетворяет зависимости соединения * (X, Y, ..., Z) в том и только в том случае, когда R восстанавливается без потерь путем соединения своих проекций на X, Y, ..., Z.
Определение 13: Пятая нормальная форма
Отношение R находится в пятой нормальной форме (нормальной форме проекции-соединения - PJ/NF) в том и только в том случае, когда любая зависимость соединения в R следует из существования некоторого возможного ключа в R.
Введем следующие имена составных атрибутов:
СО = {СОТР_НОМЕР, ОТД_НОМЕР}СП = {СОТР_НОМЕР, ПРО_НОМЕР}ОП = {ОТД_НОМЕР, ПРО_НОМЕР}Предположим, что в отношении СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ существует зависимость соединения:
* (СО, СП, ОП)На примерах легко показать, что при вставках и удалениях кортежей могут возникнуть проблемы. Их можно устранить путем декомпозиции исходного отношения в три новых отношения:
СОТРУДНИКИ-ОТДЕЛЫ (СОТР_НОМЕР, ОТД_НОМЕР)СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР)ОТДЕЛЫ-ПРОЕКТЫ (ОТД_НОМЕР, ПРО_НОМЕР)Пятая нормальная форма - это последняя нормальная форма, которую можно получить путем декомпозиции. Ее условия достаточно нетривиальны, и на практике 5NF не используется. Заметим, что зависимость соединения является обобщением как многозначной зависимости, так и функциональной зависимости.