Other generating sources
Geothermal power comes from heat energy buried beneath the surface of the earth. In some areas of the country, magma (molten matter under the earth's crust) flows close enough to the surface of the earth to heat underground water into steam, which can be tapped for use at steam-turbine plants. This energy source generates less than 1% of the electricity in the country.
Solar power is derived from the energy of the sun. However, the sun's energy is not available full-time and it is widely scattered. The processes used to produce electricity using the sun's energy have historically been more expensive than using conventional fossil fuels. Photovoltaic conversion generates electric power directly from the light of the sun in a photovoltaic (solar) cell. Solar-thermal electric generators use the radiant energy from the sun to produce steam to drive turbines. Less than 1% of the nation's electricity is based on solar power.
Wind power is derived from the conversion of the energy contained in wind into electricity. Wind power like the sun, is usually an expensive source of producing electricity, and is used for less than 1% of the nation's electricity. A wind turbine is similar to a typical wind mill.
Biomass (wood, municipal solid waste (garbage), and agricultural waste, such as corn cobs and wheat straw, are some other energy sources for producing electricity. These sources replace fossil fuels in the boiler. The combustion of wood and waste creates steam that is typically used in conventional steam-electric plants. Biomass accounts for less than 1% of the electricity generated in the United States.
The electricity produced by a generator travels along cables to a transformer, which changes electricity from low voltage to high voltage. Electricity can be moved long distances more efficiently using high voltage. Transmission lines are used to carry the electricity to a substation. Substations have transformers that change the high voltage electricity into lower voltage electricity. From the substation, distribution lines carry the electricity to homes, offices and factories, which require low voltage electricity.
HOW IS ELECTRICITY MEASURED?
Electricity is measured in units of power called watts. It was named to honor James Watt, the inventor of the steam engine. One watt is a very small amount of power. It would require nearly 750 watts to equal one horsepower. A kilowatt represents 1,000 watts. A kilowatt-hour (kWh) is equal to the energy of 1,000 watts working for one hour. The amount of electricity a power plant generates or a customer uses over a period of time is measured in kilowatthours (kWh). Kilowatthours are determined by multiplying the number of kW's required by the number of hours of use. For example, if you use a 40-watt light bulb 5 hours a day, you have used 200 watts of power, or .2 kilowatthours of electrical energy.
Electricity - Electronics
Electricity is a form of energy involving the flow of electrons. All matter is made up of atoms, and an atom has a center, called a nucleus. The nucleus contains positively charged particles called protons and uncharged particles called neutrons. The nucleus of an atom is surrounded by negatively charged particles called electrons. The negative charge of an electron is equal to the positive charge of a proton, and the number of electrons in an atom is usually equal to the number of protons. When the balancing force between protons and electrons is upset by an outside force, an atom may gain or lose an electron. When electrons are "lost" from an atom, the free movement of these electrons constitutes an electric current.
Electricity is a basic part of nature and it is one of our most widely used forms of energy. We get electricity, which is a secondary energy source, from the conversion of other sources of energy, like coal, natural gas, oil, nuclear power and other natural sources, which are called primary sources. Many cities and towns were built alongside waterfalls (a primary source of mechanical energy) that turned water wheels to perform work. Before electricity generation began slightly over 100 years ago, houses were lit with kerosene lamps, food was cooled in iceboxes, and rooms were warmed by wood-burning or coal-burning stoves. Beginning with Benjamin Franklin's experiment with a kite one stormy night in Philadelphia, the principles of electricity gradually became understood. In the mid-1800s, everyone's life changed with the invention of the electric light bulb. Prior to 1879, electricity had been used in arc lights for outdoor lighting. The lightbulb's invention used electricity to bring indoor lighting to our homes.