Модели представления знаний

Существуют два типа методов представления знаний (ПЗ):

Формальные модели ПЗ;

Неформальные (семантические, реляционные) модели ПЗ.

Очевидно, все методы представления знаний, которые рассмотрены выше, включая продукции (это система правил, на которых основана продукционная модель представления знаний), относятся к неформальным моделям. В отличие от формальных моделей, в основе которых лежит строгая математическая теория, неформальные модели такой теории не придерживаются. Каждая неформальная модель годится только для конкретной предметной области и поэтому не обладает универсальностью, которая присуща моделям формальным. Логический вывод - основная операция в СИИ - в формальных системах строг и корректен, поскольку подчинен жестким аксиоматическим правилам. Вывод в неформальных системах во многом определяется самим исследователем, который и отвечает за его корректность.

Каждому из методов ПЗ соответствует свой способ описания знаний.

Логические модели. В основе моделей такого типа лежит формальная система, задаваемая четверкой вида: M = <T, P, A, B>.

2. Сетевые модели. В основе моделей этого типа лежит конструкция, названная ранее семантической сетью. Сетевые модели формально можно задать в виде H = <I, C1, C2, ..., Cn, Г>. Здесь I есть множество информационных единиц; C1, C2, ..., Cn - множество типов связей между информационными единицами.

3. Продукционные модели. В моделях этого типа используются некоторые элементы логических и сетевых моделей. Из логических моделей заимствована идея правил вывода, которые здесь называются продукциями, а из сетевых моделей - описание знаний в виде семантической сети. В результате применения правил вывода к фрагментам сетевого описания происходит трансформация семантической сети за счет смены ее фрагментов, наращивания сети и исключения из нее ненужных фрагментов.

Фреймовые модели. В отличие от моделей других типов во фреймовых моделях фиксируется жесткая структура информационных единиц, которая называется протофреймом.

Выбор способа представления знаний в интеллектуальной системе является ключевым моментом разработки. С точки зрения человека, желательно, чтобы описательные возможности используемой модели были как можно выше. С другой стороны, сложное представление знаний требует специальных способов обработки (усложняется механизм вывода), что затрудняет проектирование и реализацию интеллектуальной подсистемы .

Для реализации базы знаний адаптивной информационной системы можно выбрать сочетание продукционной и логической моделей. Совместное использование этих моделей представления знаний обладает рядом преимуществ:

a) снижаются требования к качеству и полноте хранящихся знаний;

b) увеличивается эффективность обработки продукций;

c)увеличивается наглядность представления знаний, т.к. подавляющая часть

40.

Интеллектуальная информационная система — разновидность интеллектуальной системы, один из видов информационных систем, иногда ИИС называют системой, основанной на знаниях. ИИС представляет собой комплекс программных, лингвистических и логико-математических средств для реализации основной задачи: осуществление поддержки деятельности человека, например возможность поиска информации в режиме продвинутого диалога на естественном языке.

Классификация задач, решаемых ИИС

Интерпретация данных. Это одна из традиционных задач для экспертных систем. Под интерпретацией понимается процесс определения смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных.

Диагностика. Под диагностикой понимается процесс соотношения объекта с некоторым классом объектов и/или обнаружение неисправности в некоторой системе. Неисправность — это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии. Важной спецификой является здесь необходимость понимания функциональной структуры («анатомии») диагностирующей системы.

Мониторинг. Основная задача мониторинга — непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы.

Проектирование. Проектирование состоит в подготовке спецификаций на создание «объектов» с заранее определёнными свойствами. Под спецификацией понимается весь набор необходимых документов—чертёж, пояснительная записка и т.д. Основные проблемы здесь — получение чёткого структурного описания знаний об объекте и проблема «следа».

Прогнозирование. Прогнозирование позволяет предсказывать последствия некоторых событий или явлений на основании анализа имеющихся данных. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций.

Планирование. Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких ЭС используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности.

Обучение. Под обучением понимается использование компьютера для обучения какой-то дисциплине или предмету.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами.

Управление. Под управлением понимается функция организованной системы, поддерживающая определенный режим деятельности. Такого рода ЭС осуществляют управление поведением сложных систем в соответствии с заданными спецификациями.

Поддержка принятия решений. Поддержка принятия решения — это совокупность процедур, обеспечивающая лицо, принимающее решения, необходимой информацией и рекомендациями, облегчающие процесс принятия решения.

41. Экспе́ртная систе́ма — компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные ЭС начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х получили коммерческое подкрепление. В информатике экспертные системы рассматриваются совместно с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний — как совокупность фактов и правил логического вывода в выбранной предметной области деятельности.

Классификация ЭС по решаемой задаче

Интерпретация данных

Диагностирование

Мониторинг

Проектирование

Прогнозирование

Сводное Планирование

Обучение

Управление

Ремонт

Отладка

Классификация ЭС по связи с реальным временем

Статические ЭС - это ЭС, решающие задачи в условиях не изменяющихся во времени исходных данных и знаний.

Квазидинамические ЭС интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени.

Динамические ЭС - это ЭС, решающие задачи в условиях изменяющихся во времени исходных данных и знаний.

42. получившие название нейросетевых, работают по аналогии с принципами строения и функционирования нейронов головного мозга человека и позволяют решать чрезвычайно широкий круг задач: распознавание человеческой речи и абстрактных образов, классификацию состояний сложных систем, управление технологическими процессами и финансовыми потоками, решение аналитических, исследовательских, прогнозных задач, связанных с обширными информационными потоками. Являясь мощным технологическим инструментом, нейросетевые технологии облегчают специалисту процесс принятия важных и неочевидных решений в условиях неопределенности, дефицита времени и ограниченных информационных ресурсов. С середины 1980-х годов нейронные сети начали использоваться на Западе преимущественно в финансовых и военных приложениях.

нейросетевая технология обладает двумя чрезвычайно полезными свойствами. 1. Способностью обучаться на конкретном множестве примеров. 2. Умением стабильно распознавать, прогнозировать новые си-туации с высокой степенью точности, причем в условиях внешних помех, например появления противоречивых или неполных значений в потоках информации. Взяв за основу работу мозга, нейросетевые технологии включили в себя и ряд биологических терминов, понятий, параметров, а метод получил название генетического алгоритма. Генетический алгоритм реализован в популярных версиях ней- ропакетов — широко известном в России Biain Maker Professional v.3.11 и менее известном, но более профессиональном Neurofo- rester v.5.1.

Наши рекомендации