Перевірка стаціонарності часового ряду
Стаціонарні часові ряди передбачають, що процес породження наявних даних є лінійним. Вони не мають тренду або періодичної зміни середнього та дисперсії.
Перевірку гіпотез стосовно сталості середнього значення та дисперсії часового ряду можна здійснити кількома способами. Найпростішими з них є перевірка значущої відмінності двох середніх значень для деяких підмножин вибірки (наприклад, для першої та останньої третин усього обсягу даних) за — критерієм (критерій перевірки гіпотези про рівність середніх двох нормально розподілених вибірок) і для дисперсії, якщо справедливе припущення про нормальний розподіл, можна використати F-критерій. Розглянемо два поширені методи: метод перевірки різниць середніх рівнів і метод Форстера-Стьюарта.
Метод перевірки різниць середніх рівнів.
Реалізація цього методу передбачає такі чотири кроки.
Крок перший. Вхідний часовий ряд розподіляють на дві приблизно однакові за кількістю спостережень частини: в першій частині п1 першої половини рівнів вхідного ряду, у другій — решта рівнів п2 ( ).
Крок другий. Для кожної з цих частин розраховують середні значення й дисперсії: ; ; ; .
Крок третій. Перевірка рівності (однорідності) дисперсій обох частин ряду за допомогою F-критерію, що порівнює розрахункове значення цього критерію:
(1.3.1)
із табличним (критичним) значенням критерію Фішера Fα із заданим рівнем значущості α. Якщо розрахункове значення F менше за табличне Fα, то гіпотезу про рівність дисперсій приймають, і можна переходити до четвертого кроку. Якщо F більше або дорівнює Fα, гіпотезу про рівність дисперсій відхиляють і доходять висновку, що цей метод не дає відповіді щодо наявності тренду.
На четвертому кроці перевіряють гіпотезу про відсутність тренду за допомогоюt-критерію Стьюдента.Для цього визначають розрахункове значення критерію Стьюдента за формулою:
, (1.3.2)
де — оцінка середньоквадратичного відхилення різниць середніх:
.
Якщо розрахункове значення t менше за табличне tα, то нульову гіпотезу не відхиляють, тобто тренд відсутній, інакше — тренд є. Зазначимо, що в цьому разі табличне значення tαприймають для числа ступенів вільності, яке дорівнює , до того ж цей метод застосовують суто для рядів із монотонною тенденцією. Недолік методу полягає у неможливості правильно визначити існування тренду в тому разі, коли часовий ряд містить точку зміни тенденції у середині ряду.
Метод Форстера-Стьюарта.
Цей метод має більші можливості та дає надійніші результати, ніж попередній. Окрім тренду самого ряду (тренду в середньому), він дає змогу встановити існування тренду дисперсії часового ряду: якщо тренду дисперсії
немає, то розкид рівнів ряду постійний; якщо дисперсія збільшується, то ряд «розхитується». Реалізація методу передбачає чотири кроки.
Крок перший. Порівнюють кожен рівень вхідного часового ряду, починаючи з другого рівня, з усіма попередніми, при цьому визначають дві числові послідовності:
(1.3.3)
(1.3.4)
t = 2, 3, …, n.
Крок другий. Розраховують величини с і d:
; (1.3.5)
. (1.3.6)
Величина c, яка характеризує зміну рівнів часового ряду, набуває значення від 0 (усі рівні ряду однакові) до п – 1 (ряд монотонний). Величина d характеризує зміну дисперсії часового ряду та змінюється від [–(п – 1)] — ряд поступово згасає, до (п – 1) — ряд поступово розхитується.
Крок третій Перевіряється гіпотеза стосовно того, чи можна вважати випадковими: 1) відхилення величини c від математичного сподівання ряду, в якому рівні розташовані випадково, 2) відхилення величини d від нуля. Цю перевірку здійснюють на підставі обчислення t-відношення відповідно для середньої та для дисперсії:
; ; (1.3.7)
; , (1.3.8)
де — оцінка математичного сподівання ряду; 1 — оцінка середньоквадратичного відхилення для величини c; — оцінка середньоквадратичного відхилення для величини d.
Таблиця 1.3.2
п | ||||
3,858 | 5,195 | 5,990 | 6,557 | |
1 | 1,288 | 1,677 | 1,882 | 2,019 |
2 | 1,964 | 2,279 | 2,447 | 2,561 |
Фрагмент розрахованих значень величин , 1 і 2 для різних п наведено в табл. 1.3.2 [25].
Крок четвертий. Розрахункові значення tс i td порівнюють із табличним значенням t-критерію із заданим рівнем значущості tα. Якщо розрахункове значення t менше за табличне tα, то гіпотезу про відсутність відповідного тренду приймають, в іншому разі тренд існує. Наприклад, якщо tс більше табличного значення tα, a td менше tα, то для заданого часового ряду існує тренд у середньому, а тренду дисперсії рівнів ряду немає.
Приклад 1.1. |
Застосуємо метод перевірки різниць середніх рівнів для двох часових рядів: доходів консолідованого бюджету (млн. грн.) і доходів консолідованого бюджету (% ВВП). Для цього початкові часові ряди поділяють на дві однакові частини: перша охоплює 1999—2000 роки, друга — 2001—2002 роки. Кількість кварталів-спостережень в обох частинах однакова: п1 = п2 = 8. Результати розрахунків наведено в табл. 1.3.1. На рівні значущості , тобто з імовірністю 0,95, із числом ступенів вільності* k1= п1 – 1 = 8 – 1 = 7 і k2= п2 –1 = 8 – 1 = 7 табличне значення критерію Фішера дорівнює = 3,8 (вибірка за табл. А або табл. Д.2.1 [2, с. 134-135])
Таблиця 1.1
Доходи | Роки | Середнє значення | Дисперсія | F | t | |
Млн грн | 1999—2000 2001—2002 | 9860,2 13695,8 | 8349206 4459451 | 1,87 | 2733,44 | 2,8 |
% до ВВП | 1999—2000 2001—2002 | 26,0 24,5 | 6,41 1,92 | 3,34 | 2,2 | 1,37 |
Для обох часових рядів F розрахункові менші за табличне значення , тобто приймається гіпотеза про рівність дисперсій.
На рівні значущості із числом ступенів свободи п1+ п2 – 2 = 16 – 2 = 14 табличне значення t-розподілу дорівнює = 2,145 (вибірка за табл. Д.2.2 [2, с. 136-137].
Для часового ряду доходів, виражених у млн. грн., t-розрахункове перевищує табличне значення , тобто нульова гіпотеза не приймається, тренд існує.
Для часового ряду доходів, виражених у відсотках до ВВП, t-розрахункове менше за табличне значення , тобто приймається гіпотеза про відсутність тренду. 8
________________________
*Примітка:
Число сту́пенів вільності (або ступенів свободи) — кількість незалежних змінних, які однозначно описують стан системи.
Приклад 1.2. |
Застосування методу Форстера-Стьюарта для двох часових рядів: доходів консолідованого бюджету (млн грн) та доходів консолідованого бюджету (% до ВВП) дає розрахунки, наведені в табл. 1.3.3.
Таблиця 1.3.3
Доходи | ∑kt | ∑lt | c | d | tс | td |
Млн. грн. | 3,28 | 4,07 | ||||
% до ВВП | 0,9 | 1,53 |
На рівні значущості , тобто з імовірністю 0,95 та з числом ступенів волі п – 2 = 16 – 2 = 14 табличне значення критерія Стьюдента дорівнює = 2,145.
Для часового ряду доходів, виражених у млн грн, розрахункові значення tс і td перевищують табличне значення , тобто нульова гіпотеза не приймається, існує тренд як середнього, так і дисперсії ряду.
Для часового ряду доходів, виражених у відсотках до ВВП, розрахункові значення tс і td менші за табличне значення , тобто приймається гіпотеза про відсутність тренду в тенденції й дисперсії ряду. 8
вибірка за табл. A або табл. Д..1 [2, с. 136-137]
= 3,79 або = 3,8 = (3,87+3,73)/2
Значения критерия Фишера (F-критерия) для уровня значимости
k1 | |||||||||||
k2 | |||||||||||
161.45 | 199.50 | 215.71 | 224.58 | 230.16 | 233.99 | 236.77 | 238.88 | 240.54 | 241.88 | 245.95 | |
18.51 | 19.00 | 19.16 | 19.25 | 19.30 | 19.33 | 19.35 | 19.37 | 19.38 | 19.40 | 19.43 | |
10.13 | 9.55 | 9.28 | 9.12 | 9.01 | 8.94 | 8.89 | 8.85 | 8.81 | 8.79 | 8.70 | |
7.71 | 6.94 | 6.59 | 6.39 | 6.26 | 6.16 | 6.09 | 6.04 | 6.00 | 5.96 | 5.86 | |
6.61 | 5.79 | 5.41 | 5.19 | 5.05 | 4.95 | 4.88 | 4.82 | 4.77 | 4.74 | 4.62 | |
5.99 | 5.14 | 4.76 | 4.53 | 4.39 | 4.28 | 4.21 | 4.15 | 4.10 | 4.06 | 3.94 | |
5.59 | 4.74 | 4.35 | 4.12 | 3.97 | 3.87 | 3.79 | 3.73 | 3.68 | 3.64 | 3.51 | |
5.32 | 4.46 | 4.07 | 3.84 | 3.69 | 3.58 | 3.50 | 3.44 | 3.39 | 3.35 | 3.22 | |
5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 | 3.29 | 3.23 | 3.18 | 3.14 | 3.01 | |
4.96 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.14 | 3.07 | 3.02 | 2.98 | 2.85 | |
4.84 | 3.98 | 3.59 | 3.36 | 3.20 | 3.09 | 3.01 | 2.95 | 2.90 | 2.85 | 2.72 | |
4.75 | 3.89 | 3.49 | 3.26 | 3.11 | 3.00 | 2.91 | 2.85 | 2.80 | 2.75 | 2.62 | |
4.67 | 3.81 | 3.41 | 3.18 | 3.03 | 2.92 | 2.83 | 2.77 | 2.71 | 2.67 | 2.53 | |
4.60 | 3.74 | 3.34 | 3.11 | 2.96 | 2.85 | 2.76 | 2.70 | 2.65 | 2.60 | 2.46 | |
4.54 | 3.68 | 3.29 | 3.06 | 2.90 | 2.79 | 2.71 | 2.64 | 2.59 | 2.54 | 2.40 | |
4.49 | 3.63 | 3.24 | 3.01 | 2.85 | 2.74 | 2.66 | 2.59 | 2.54 | 2.49 | 2.35 | |
4.45 | 3.59 | 3.20 | 2.96 | 2.81 | 2.70 | 2.61 | 2.55 | 2.49 | 2.45 | 2.31 | |
4.41 | 3.55 | 3.16 | 2.93 | 2.77 | 2.66 | 2.58 | 2.51 | 2.46 | 2.41 | 2.27 | |
4.38 | 3.52 | 3.13 | 2.90 | 2.74 | 2.63 | 2.54 | 2.48 | 2.42 | 2.38 | 2.23 | |
4.35 | 3.49 | 3.10 | 2.87 | 2.71 | 2.60 | 2.51 | 2.45 | 2.39 | 2.35 | 2.20 |
Таблиця Д.2.1
[2, с. 134-135]
ТАБЛИЦЯ ЗНАЧЕНЬ F-КРИТЕРІЮ ФІШЕРА
ПРИ РІВНІ ЗНАЧУЩОСТІ α = 0,05
k1 k2 | ∞ | |||||||||
161,45 | 199,50 | 215,72 | 224,57 | 230,17 | 233,97 | 238,89 | 243,91 | 249,04 | 254,32 | |
18,51 | 19,00 | 19,16 | 19,25 | 19,30 | 19,33 | 19,37 | 19,41 | 19,45 | 19,50 | |
10,13 | 9,55 | 9,28 | 9,12 | 9,01 | 8,94 | 8,84 | 8,74 | 8,64 | 8,53 | |
7,71 | 6,94 | 6,59 | 6,39 | 6,26 | 6,16 | 6,04 | 5,91 | 5,77 | 5,63 | |
6,61 | 5,79 | 5,41 | 5,19 | 5,05 | 4,95 | 4,82 | 4,68 | 4,53 | 4,36 | |
5,99 | 5,14 | 4,76 | 4,53 | 4,39 | 4,28 | 4,15 | 4,00 | 3,84 | 3,67 | |
5,59 | 4,74 | 4,35 | 4,12 | 3,97 | 3,87 | 3,73 | 3,57 | 3,41 | 3,23 | |
5,32 | 4,46 | 4,07 | 3,84 | 3,69 | 3,58 | 3,44 | 3,28 | 3,12 | 2,93 | |
5,12 | 4,26 | 3,86 | 3,63 | 3,48 | 3,37 | 3,23 | 3,07 | 2,90 | 2,71 | |
4,96 | 4,10 | 3,71 | 3,48 | 3,33 | 3,22 | 3,07 | 2,91 | 2,74 | 2,54 | |
4,84 | 3,98 | 3,59 | 3,36 | 3,20 | 3,09 | 2,95 | 2,79 | 2,61 | 2,40 | |
4,75 | 3,88 | 3,49 | 3,26 | 3,11 | 3,00 | 2,85 | 2,69 | 2,50 | 2,30 | |
4,67 | 3,80 | 3,41 | 3,18 | 3,02 | 2,92 | 2,77 | 2,60 | 2,42 | 2,21 | |
4,60 | 3,74 | 3,34 | 3,11 | 2,96 | 2,85 | 2,70 | 2,53 | 2,35 | 2,13 | |
4,54 | 3,68 | 3,29 | 3,06 | 2,90 | 2,79 | 2,64 | 2,48 | 2,29 | 2,07 | |
4,49 | 3,63 | 3,24 | 3,01 | 2,85 | 2,74 | 2,59 | 2,42 | 2,24 | 2,01 | |
4,45 | 3,59 | 3,20 | 2,96 | 2,81 | 2,70 | 2,55 | 2,38 | 2,19 | 1,96 | |
4,41 | 3,55 | 3,16 | 2,93 | 2,77 | 2,66 | 2,51 | 2,34 | 2,15 | 1,92 | |
4,38 | 3,52 | 3,13 | 2,90 | 2,74 | 2,63 | 2,48 | 2,31 | 2,11 | 1,88 | |
4,35 | 3,49 | 3,10 | 2,87 | 2,71 | 2,60 | 2,45 | 2,28 | 2,08 | 1,84 | |
4,32 | 3,47 | 3,07 | 2,84 | 2,68 | 2,57 | 2,42 | 2,25 | 2,05 | 1,81 | |
4,30 | 3,44 | 3,05 | 2,82 | 2,66 | 2,55 | 2,40 | 2,23 | 2,03 | 1,78 | |
4,28 | 3,42 | 3,03 | 2,80 | 2,64 | 2,53 | 2,38 | 2,20 | 2,00 | 1,76 |
Закінчення табл. Д.2.1
k1 k2 | ∞ | |||||||||
4,26 | 3,40 | 3,01 | 2,78 | 2,62 | 2,51 | 2,36 | 2,18 | 1,98 | 1,73 | |
4,24 | 3,38 | 2,99 | 2,76 | 2,60 | 2,49 | 2,34 | 2,16 | 1,96 | 1,71 | |
4,22 | 3,37 | 2,98 | 2,74 | 2,59 | 2,47 | 2,32 | 2,15 | 1,95 | 1,69 | |
4,21 | 3,35 | 2,96 | 2,73 | 2,57 | 2,46 | 2,30 | 2,13 | 1,93 | 1,67 | |
4,20 | 3,34 | 2,95 | 2,71 | 2,56 | 2,44 | 2,29 | 2,12 | 1,91 | 1,65 | |
4,18 | 3,33 | 2,93 | 2,70 | 2,54 | 2,43 | 2,28 | 2,10 | 1,90 | 1,64 | |
4,17 | 3,32 | 2,92 | 2,69 | 2,53 | 2,42 | 2,27 | 2,09 | 1,89 | 1,62 | |
4,12 | 3,26 | 2,87 | 2,64 | 2,48 | 2,37 | 2,22 | 2,04 | 1,83 | 1,57 | |
4,08 | 3,23 | 2,84 | 2,61 | 2,45 | 2,34 | 2,18 | 2,00 | 1,79 | 1,51 | |
4,06 | 3,21 | 2,81 | 2,58 | 2,42 | 2,31 | 2,15 | 1,97 | 1,76 | 1,48 | |
4,03 | 3,18 | 2,79 | 2,56 | 2,40 | 2,29 | 2,13 | 1,95 | 1,74 | 1,44 | |
4,00 | 3,15 | 2,76 | 2,52 | 2,37 | 2,25 | 2,10 | 1,92 | 1,70 | 1,39 | |
3,98 | 3,13 | 2,74 | 2,50 | 2,35 | 2,23 | 2,07 | 1,89 | 1,67 | 1,35 | |
3,96 | 3,11 | 2,72 | 2,49 | 2,33 | 2,21 | 2,06 | 1,88 | 1,65 | 1,31 | |
3 91 | 3,10 | 2,71 | 2,47 | 2,32 | 2,20 | 2,04 | 1,86 | 1,64 | 1,28 | |
3,94 | 3,09 | 2,70 | 2,46 | 2,30 | 2,19 | 2,03 | 1,85 | 1,63 | 1,26 | |
3,92 | 3,07 | 2,68 | 2,44 | 2,29 | 2,17 | 2,01 | 1,83 | 1,60 | 1,21 | |
3,90 | 3,06 | 2,66 | 2,43 | 2,27 | 2,16 | 2,00 | 1,82 | 1,59 | 1,18 | |
3,89 | 3,04 | 2,65 | 2,42 | 2,26 | 2,14 | 1,98 | 1,80 | 1,57 | 1,14 | |
3,87 | 3,03 | 2,64 | 2,41 | 2,25 | 2,13 | 1,97 | 1,79 | 1,55 | 1,10 | |
3,86 | 3,02 | 2,63 | 2,40 | 2,24 | 2,12 | 1,96 | 1,78 | 1,54 | 1,07 | |
3,86 | 3,01 | 2,62 | 2,39 | 2,23 | 2,11 | 1,96 | 1,77 | 1,54 | 1,06 | |
3,85 | 3,00 | 2,61 | 2,38 | 2,22 | 2,10 | 1,95 | 1,76 | 1,53 | 1,03 | |
∞ | 3,84 | 2,99 | 2,60 | 2,37 | 2,21 | 2,09 | 1,94 | 1,75 | 1,52 | 1,00 |
Таблиця Д.2.2
[2, с. 136-137]
КРИТИЧНІ ЗНАЧЕННЯ t-КРИТЕРІЮ СТЬЮДЕНТА
ПРИ РІВНІ ЗНАЧУЩОСТІ 0,10, 0,05, 0,01 (двосторонній)