Привод с подвижной катушкой
Такой привод используется практически во всех современных накопителях. В отличие от систем с шаговыми двигателями, в которых перемещение головок осуществляется вслепую, привод с подвижной катушкой использует сигнал обратной связи, чтобы можно было точно определить положения головок относительно дорожек и скорректировать их в случае необходимости. Такая система обеспечивает более высокие быстродействие, точность и надежность, чем традиционный привод с шаговым двигателем.
Привод с подвижной катушкой работает по принципу электромагнетизма. По конструкции он напоминает обычный громкоговоритель. В типичной конструкции привода подвижная катушка жестко соединяется с блоком головок и размещается в поле постоянного магнита. Катушка и магнит никак не связаны между собой; перемещение катушки осуществляется только под воздействием электромагнитных сил. При появлении в катушке электрического тока она так же, как и в громкоговорителе, смещается относительно жестко закрепленного постоянного магнита, передвигая при этом блок головки. Подобный механизм обладает высоким быстродействием и оказывается менее шумным, чем привод с шаговым двигателем.
В отличие от привода с шаговым двигателем, в устройствах с подвижной катушкой нет заранее зафиксированных положений. Вместо этого в них используется специальная система наведения (позиционирования), которая точно подводит головки к нужному цилиндру (поэтому привод с подвижной катушкой может плавно перемещать головки в любые положения). Эта система называется сервоприводом, для точного наведения (позиционирования) головок используется сигнал обратной связи, несущий информацию о реальном взаимном расположении дорожек и головок. Эту систему часто называют системой с обратной связью (или с автоматической регулировкой).
Колебания температур не сказываются на точности работы привода с подвижной катушкой и обратной связью. При сжатии и расширении дисков все изменения их размеров отслеживаются сервоприводом, и положения головок корректируются. Для поиска конкретной дорожки используется заранее записанная на диске вспомогательная информация (сервокод), и в процессе работы всегда определяется реальное положение цилиндра на диске с учетом всех отклонений температур. Поскольку сервокод считывается непрерывно, в процессе нагрева накопителя и расширения дисков, например, головки отслеживают дорожку и проблем со считыванием данных не возникает. Поэтому привод с подвижной катушкой и обратной связью часто называют системой слежения за дорожками.
Механизмы привода головок с подвижной катушкой бывают двух типов:
- линейный;
- поворотный.
Эти типы отличаются только физическим расположением магнитов и катушек
Линейный привод
Линейный привод перемещает головки по прямой, строго вдоль линии радиуса диска. Катушки располагаются в зазорах постоянных магнитов. Главное достоинство линейного привода состоит в том, что при его использовании не возникают азимутальные погрешности, характерные для поворотного привода. (Под азимутом понимается угол между плоскостью рабочего зазора головки и направлением дорожки записи.) При перемещении с одного цилиндра на другой головки не поворачиваются и их азимут не изменяется.
Линейный привод имеет существенный недостаток: его конструкция слишком массивна. Чтобы повысить производительность накопителя, нужно снизить массу привода и самих головок. Чем легче механизм, тем с большими ускорениями он может перемещаться с одного цилиндра на другой. Линейные приводы намного тяжелее поворотных, поэтому в современных накопителях они не используются.
Поворотный привод работает по тому же принципу, что и линейный, но в нем к подвижной катушке крепятся концы рычагов головок. При движении катушки относительно постоянного магнита рычаги перемещения головок поворачиваются, передвигая головки к оси или к краям дисков. Благодаря небольшой массе такая конструкция может двигаться с большими ускорениями, что позволяет существенно сократить время доступа к данным. Быстрому перемещению головок способствует и тот факт, что плечи рычагов делаются разными: то, на котором смонтированы головки, имеет большую длину.
К недостаткам этого привода следует отнести то, что головки при перемещении от внешних цилиндров к внутренним поворачиваются и угол между плоскостью магнитного зазора головки и направлением дорожки изменяется. Именно поэтому ширина рабочей зоны диска (зоны, в которой располагаются дорожки) оказывается зачастую ограниченной (для того чтобы неизбежно возникающие азимутальные погрешности оставались в допустимых пределах). В настоящее время поворотный привод используется почти во всех накопителях с подвижной катушкой.
Сервопривод
Для управления приводами с подвижной катушкой в разное время использовались три способа построения петли обратной связи:
- со вспомогательным "клином";
- со встроенными кодами;
- со специализированным диском.
Они различаются технической реализацией, но, по сути, предназначены для достижения одной и той же цели: обеспечивать постоянную корректировку положения головок и их наведение (позиционирование) на соответствующий цилиндр. Основные различия между ними сводятся к тому, на каких участках поверхностей дисков записываются сервокоды.
При всех способах построения петли обратной связи для ее работы необходима специальная информация (сервокоды), которая записывается на диск при его изготовлении. Обычно она записывается в так называемом коде Грея. В этой системе кодирования при переходе от одного числа к следующему или предыдущему изменяется всего один двоичный разряд. Сервокоды записываются на диск при сборке накопителя и не изменяются в течение всего срока его эксплуатации.
Запись сервокодов выполняется на специальном устройстве, в котором головки последовательно перемещаются на строго определенные позиции, и в этих положениях на диски записываются упомянутые выше коды. Для точной установки головок в таких устройствах используется лазерный прицел, а расстояния определяются методом интерференции, т.е. с точностью до долей волны лазерного излучения. Поскольку перемещение головок в таком устройстве осуществляется механически (без участия собственного привода накопителя), все работы проводятся в чистом помещении либо с открытой крышкой блока HDA, либо через специальные отверстия, которые по окончании записи сервокодов заклеиваются герметизирующей лентой.
При обычных операциях считывания и записи удалить сервокоды невозможно. Этого нельзя сделать даже при форматировании низкого уровня. Во многих современных накопителях с приводом от подвижной катушки в процессе работы через определенные промежутки времени выполняется температурная калибровка. Эта процедура заключается в том, что все головки поочередно переводятся с нулевого на какой-либо другой цилиндр. При этом с помощью встроенной схемы проверяется, насколько сместилась заданная дорожка относительно своего положения в предыдущем сеансе калибровки, и вычисляются необходимые поправки, которые заносятся в оперативное запоминающее устройство в самом накопителе. Впоследствии эта информация используется при каждом перемещении головок, позволяя устанавливать их с максимальной точностью.
В большинстве накопителей температурная калибровка выполняется через каждые 5 мин в течение первого получаса после включения питания, а затем через каждые 25 мин. Некоторые пользователи полагают, что произошла ошибка при считывании данных, но на самом деле просто подошло время очередной калибровки.
Вспомогательный клин
Такая система записи сервокодов использовалась в первых накопителях с подвижной катушкой. Вся информация, необходимая для наведения (позиционирования) головок, записывалась в кодах Грея в узком секторе ("клине") каждого цилиндра непосредственно перед индексной меткой. Индексная метка обозначает начало каждой дорожки, т.е. вспомогательная информация записывается в предындексном интервале, расположенном в конце каждой дорожки. Этот участок необходим для компенсации неравномерности вращения диска и тактовой частоты записи, и контроллер диска обычно к нему не обращается.
Некоторым контроллерам необходимо сообщать о том, что к ним подключен накопитель со вспомогательным клином. В результате они корректируют (сокращают) длину секторов, чтобы поместить область вспомогательного клина.
Самый существенный недостаток подобной системы записи состоит в том, что считывание происходит только один раз при каждом обороте диска. Это означает, что во многих случаях для точного определения и коррекции положения головок диск должен совершить несколько оборотов. Недостаток этот был очевиден с самого начала, поэтому подобные системы никогда не были широко распространены, а сейчас и вовсе не используются.
Встроенные коды
Такой метод реализации обратной связи представляет собой улучшенный вариант системы со вспомогательным клином. В данном случае сервокоды записываются не только в начале каждого цилиндра, но и перед началом каждого сектора. Это означает, что сигналы обратной связи поступают на схему привода головок несколько раз в течение каждого оборота диска и головки устанавливаются в нужное положение намного быстрее. Еще одно преимущество (по сравнению с системой со специализированным диском) заключается в том, что сервокоды записываются на всех дорожках, поэтому может быть скорректировано положение каждой головки.
Описанный способ используется в большинстве современных накопителей. Как и в системах со вспомогательным клином, встроенные сервокоды защищены от стирания и любые операции записи блокируются, если головки оказываются над участками со служебной информацией. Поэтому даже при форматировании низкого уровня удалить сервокоды невозможно.
Система со встроенными сервокодами работает лучше, чем со вспомогательным клином, потому что служебная информация (сервокоды) считывается несколько раз за каждый оборот диска. Но вполне очевидно, что еще более эффективной должна быть система, при которой цепь обратной связи работает непрерывно, т.е. сервокоды считываются постоянно.