Катализаторы на основе хлорированной окиси алюминия
Катализаторы на основе хлорированной окиси алюминия наиболее активны и обеспечивают высокий выход и октановое число изомеризата. Следует отметить, что в ходе изомеризации такие катализаторы теряют хлор, в результате активность снижается. Поэтому, предусматривается введение в сырье хлорсодержащих соединений (обычно CCl4) для поддержания высокой активности катализатора, после чего необходима щелочная промывка от органического хлора в специальных скубберах. Существенным недостатком является то, что данный тип катализатора очень чувствителен к каталитическим ядам (кислородсодержащие соединения, вода, азот, сера, металлы) и требует очень тщательной подготовки сырья (рис.2).
Хлорированные катализаторы не регенерируются, а срок их службы составляет 3-5 лет.
Рисунок 2. Схема процесса изомеризации на хлорированных катализаторах с рециклом пентанов и гексанов
Катализаторы на основе сульфатированных оксидов металлов
Катализаторы, содержащие сульфатированные оксиды металлов (оксидные катализаторы), в последние годы получили повышенный интерес, так как они сочетают в себе высокую активность и устойчивы к действию каталитических ядов, способны к регенерации. Так же как и для цеолитных катализаторов, существует необходимость в компрессоре для подачи циркулирующего ВСГ (рис.3), однако отсутствует потребность в подаче хлора, адсорбционной осушке сырья и защелачивании УВ газов. Оксидные катализаторы характеризуются способностью к регенерации и длительным сроком службы.
Рисунок 3. Схема процесса изомеризации на оксидных катализаторах с рециклом пентанов и гексанов
Историческая справка
Термин «изомерия» введен в органическую химию Берцелиусом в 1830 году.
Это явление впервые объяснил А.М. Бутлеров. Первая монография «Об изомерии органических соединений» В.В. Марковникова опубликована в 1865 году. Изомеризация циклоалканов изучалась В.В. Марковниковым, Н.М. Кижнером и Н.Д. Зелинским в конце XIX века. Впервые реакция изомеризации алкилароматических углеводородов описана Фриделем и Крафтсом (1882 г.), а каталитическая изомеризация бутиленов — в начале XX века В.Н. Ипатьевым. Каталитическая изомеризация бутана описана Неницеску и Драганом (1933 г.), а также Б.Л. Молдавским.
Реакции изомеризации углеводородов возможны благодаря изомерии, т. е. явлению, заключающемуся в существовании нескольких соединений с одинаковыми молекулярной массой, количественным и качественным составом, но различающимися физическими и химическими свойствами. Такие соединения называют изомерами. Например, существует 5 основных изомеров гексана, 3 конформационных изомера циклогексана, не считая метилциклопентана, 17 изомеров гексена. У октана насчитывается 18 изомеров, а у тетрадекана — уже 1818.
Известны два основных вида изомерии: структурная и пространственная (стереоизомерия).
Применительно к углеводородам выделяются следующие виды изомеризации. Простейшим примером изомеризации углеродного скелета может служить превращение н-бутана в изобутан или м-ксилола в п-ксилол.
Частным случаем изомеризации углеродного скелета является кольчато-цепная изомеризация, например пропилена в циклопропан или метилциклопентана в циклогексан. Изомеризация бутена-1 в цис-бутен-2 может служить примером изомеризации положения двойной связи между атомами углерода. Превращение цис-бутена-2 в транс-бутен-2 иллюстрирует пример геометрической (пространственной или конфигурационной) изомеризации. К этому типу изомеризации можно отнести превращение цис-1,2-диметилциклопентана в транс-1,2-диметилциклопентан. Одним из случаев пространственной изомерии является наличие стереоизомеров, называемых также оптическими, т. е. по-разному вращающих плоскость поляризованного света, например 3-метилгексан. Даже н-алканы, строение молекул которых не является линейным, а «зигзагообразным», могут существовать также в виде поворотных (конформационных) изомеров. Конформационная изомеризация происходит в результате вращения в молекуле атомов (групп атомов) вокруг простых (ординарных С—С-связей). Так, например, н-бутан имеет 4 конформационных изомера, из которых энергетически наиболее устойчивой является трансоидная форма.
Заключение
Переработка нефтяных продуктов (пиролиз, крекинг) обычно сопровождается изомеризацией линейных углеводородов в соединения с разветвленной цепью, которые имеют более высокое октановое число. Из продукта изомеризации хлорированного бутена (см. рис. 2, реакция 4) получают бензостойкий каучук хлоропрен.
Перегруппировку Бекмана применяют для промышленного синтеза капролактама (см. рис. 4, реакция 2), из которого получают поликапролактам (капрон). Бензидиновую перегруппировку (см. рис. 4, реакция 3) используют для получения соединений, применяемых в производстве азокрасителей. Реакция Арбузова (см. рис. 4, реакция 4) позволяет получать соединения со связью С-Р, на основе которых производят пестициды.