Понятие случайной величины
Случайная величина - величина, значение которой получается в результате пересчета или измерений и не может быть однозначно определено условиями его возникновения.
То есть случайная величина представляет собой числовые случайные события.
Случайные величины подразделяют на два класса:
Дискретные случайные величины - значения этих величин представляют собой натуральные числа, которым как отдельным событиям сопоставляются частоты и вероятности.
Непрерывные случайные величины - могут принимать любые значения из некоторого промежутка (интервала). Учитывая, что на промежутке от Х1 до Х2 числовых значений бесконечное множество, то вероятность того, что случайная величина ХiЄ(Х1,Х2) примет определенное значение, бесконечно мала. Учитывая, что невозможно перечислить все значения непрерывной случайной величины, на практике пользуются средним значением интервала (Х1,Х2).
Для дискретных случайных величин функция у=Р(х) - называется функцией распределения случайной величины и имеет график - его называют многоугольник распределения.
Различают следующие группы числовых характеристик: характеристики положения (математическое ожидание, мода, медиана, квантиль и др.), рассеивания (дисперсия, среднеквадратичное отклонение и др.), характеристики формы плотности распределения (показатель асимметрии, эксцесса и др.).
Математическим ожиданием (средним значением по распределению) называется действительное число, определяемое в зависимости от типа СВ Х формулой:
mX = M[X] =
Математическое ожидание существует, если ряд (соответственно интеграл) в правой части формулы сходится абсолютно. Если mX = 0, то СВ Х называется центрированной (обозначается ).
Свойства математического ожидания:
M[C] = C,
где С - константа;
M[C×X] = C×M[X];
M[X+Y] = M[X]+M[Y],
для любых СВ X и Y;
M[X×Y] = M[X]×M[Y] + KXY,
где KXY = M[ ] - ковариация СВ X и Y.
Начальным моментом k-го порядка (k = 0, 1, 2, ...) распределения СВ Х называется действительное число, определяемое по формуле:
nk = M[Xk] =
Центральным моментом k-го порядка распределения СВ Х называется число, определяемое по формуле:
mk = M[(X-mX)k]=
Из определений моментов, в частности, следует, что: n0 = m0 = 1, n1 = mX, m2 = DX = sX2.
Модой СВНТ называется действительное число Mo(X) = x*, определяемое как точка максимума ПР f(x). Мода может иметь единственное значение (унимодальное распределение) или иметь множество значений (мультимодальное распределение).
Медианой СВНТ называется действительное число Mе(X) = x0, удовлетворяющее условию: P{X < x0} = P{X ³ x0} или F(x0) = 0,5.
Квантилем уровня р называется действительное число tp, удовлетворяющее уравнению: F(tp) = p. В частности, из определения медианы следует, что x0 = t0,5.
Дисперсией СВ Х называется неотрицательное число D[X] = DХ, определяемое формулой:
DX = M[(X-mX)2] = M[X2] - mX2 =
Дисперсия существует, если ряд (соответственно интеграл) в правой части равенства сходится. Свойства дисперсии:
D[C] = 0, где С - константа;
D[C×X] = C2×D[X];
D[X-C] = D[X],
дисперсия, очевидно, не меняется от смещения СВ X;
D[X + Y] = D[X] + D[Y] + 2×KXY,
где KXY = M[ ] - ковариация СВ X и Y;
Неотрицательное число sХ = называется среднеквадратичным отклонением СВ X. Оно имеет размерность СВ Х и определяет некоторый стандартный среднеквадратичный интервал рассеивания, симметричный относительно математического ожидания. (Величину sХ иногда называют стандартным отклонением). СВ Х называется стандартизованной, если mX = 0 и sХ = 1. Если величина Х = const (т.е. Х не случайна), то D[X] = 0.
Показателем асимметрии ПР является коэффициент асимметрии (“скошенности”) распределения: A = m3/s3X. Показателем эксцесса ПР является коэффициент эксцесса (“островершинности”) распределения: E = (m4/s4X)-3. В частности, для нормального распределения E = 0.
Упорядочная совокупность n случайных величин (СВ) Х1, Х2, ..., Хn, рассматриваемых совместно в данном опыте, называется n-мерной СВ или случайным вектором и обозначается = (Х1, Х2, ..., Хn).
Функцией распределения (ФР) n-мерного случайного вектора называется функция n действительных переменных х1, x2, ..., xn, определяемая как вероятность совместного выполнения n неравенств: F(x1, x2, ... xn) = P{ X1 < x1, X2 < x2,..., Xn < xn}. В частности, для двумерного случайного вектора (X, Y) по определению ФР имеем: F(x, y) = P{X < x, Y < y}. ФР F (х, у) обладает следующими свойствами:
1 0 £ F(x, у) £ 1;
2 F(x, у) - неубывающая функция своих аргументов;
3.
4.
Свойство 4 обычно называют условием согласованности. Оно означает, что ФР отдельных компонент случайного вектора могут быть найдены предельным переходом из функции совместного распределения этих компонент. Вероятность попадания случайной точки на плоскости (X, Y) в прямоугольник со сторонами, параллельными осям координат, может быть вычислена с помощью ФР по формуле:
P{x1 £ X < x2, y1 £ Y < y2} = F(x1, y1)+ F(x2, y2)- F(x1, y2)- F(x2, y1).
Двумерный случайный вектор (X,Y) называется случайным вектором дискретного типа (СВДТ), если множество его возможных значений G(x, y) не более чем счетно. Ее закон распределения можно задать двумерной таблицей из перечня возможных значений пар компонент {(хi, yi) | (хi, yi) Î G(x, y)} и соответствующих каждой такой паре вероятностей pij = P{X = xi, Y = yj}, удовлетворяющих условию
Двумерный случайный вектор (X, Y) называется случайным вектором непрерывного типа (СВНТ), если существует такая неотрицательная функция f(x, y) называемая плотностью распределения (ПР) вероятностей случайного вектора, что:
f(x, y) = , тогда F(x, y) = .
ПР вероятностей обладает следующими свойствами:
f(x, y) ³ 0, (x, y) Î R2;
- условие нормировки.
ПР вероятностей отдельных компонент случайного вектора выражаются в виде интегралов от совместной плотности:
f(x) = f(y) = .
Вероятность попадания случайной точки в произвольную квадрируемую область S на плоскости определяется по формуле
P{(X, Y) Î S}= .
Условной плотностью распределения вероятностей случайной компоненты X при условии, что компонента Y приняла определенное значение у, называется функция f(x/y) действительной переменной х Î R: f(x/y) = f(x, y)/f(y). Аналогично определяется условная плотностью распределения вероятностей случайной компоненты Y при условии, что компонента X приняла определенное значение x: f(y/x) = f(x, y)/f(x). СВ X1, X2, ..., Хn называются независимыми (в совокупности), если для событий {Xi Î Bi}, i = 1, 2, ..., n, где B1, B2, ... Bn - подмножества числовой прямой, выполняется равенство: P{X1 Î B1, X2 Î B2, ... Xn Î Bn} = P{X1 Î B1}× P{X2 Î B2}× ... ×P{Xn Î Bn}.
Теорема: СВ X1, Х2, .... Хn независимы тогда и только тогда, когда в любой точке x = (x1, x2, ..., xn) имеет место равенство: F(x1, x2, ..., xn) = F(x1) × F (x2) × ... × F (xn) (или f(x1, x2, ..., xn) = f(x1) × f(x2) × ... × f(xn)).
Для двумерного случайного вектора (X, Y) вводятся следующие числовые характеристики.
Начальным моментом порядка r + s случайного вектора (X, Y) называется действительное число nr,s, определяемое формулой:
nr,s = M[Xr Ys] =
Начальный момент nr,s существует, если интеграл (соответственно ряд) в правой части равенства абсолютно сходится. В частности, nr,0 = M[Xr] - соответствующие начальные моменты компоненты X. Вектор с неслучайными координатами (mX, mY) = (n1,0, n0,1) называется математическим ожиданием случайного вектора (X, Y) или центром рассеивания.
Центральным моментом порядка r + s случайного вектора (X, Y) называется действительное число mr,s определяемое формулой
mr,s = M[(X-mX)r (Y-mY)s] =
Центральный момент mr,s существует, если интеграл (соответственно ряд) в правой части равенства абсолютно сходится. Вектор с неслучайными координатами (DX, DY) = (m2,0, m0,2) называется дисперсией случайного вектора.
Центральный момент m1,1 называется корреляционным моментом (ковариацией): KXY = M[ ] = M[(X-mX)×(Y-mY)] = M[XY]-mX mY.
Коэффициентом корреляции двух случайных компонентов X и Y случайного вектора является нормированная ковариация
rXY = KXY/(sXsY).
Свойства ковариации (и коэффициента корреляции):
KXX = DX, KYY = DY, (rXX = rYY = 1);= KYX, (rXY = rYX);
|KXY| £ , (|rXY | £ 1).
Ковариационный момент и коэффициент корреляции определяет степень линейной зависимости между X и Y. Условие |rXY | = 1 необходимо и достаточно, чтобы СВ X и Y были связаны линейной зависимостью Х = a×Y + b, где a и b - константы. СВ, для которых KXY = 0 (rXY = 0), называются некоррелированными. Из независимости случайных величин Х и Y вытекает их некоррелированность (обратное, вообще говоря, неверно).
Условным математическим ожиданием компоненты Х при условии, что Y приняла одно из своих возможных значений yj, называется действительное число определяемое формулой:
mX/Y = M[X/Y = yj] =
где Р{X = xi /Y = yj} = , pij = Р{X = xi ,Y = yj}.
Условной дисперсией компоненты Х при условии, что Y приняла одно из своих возможных значений yj, называется действительное число определяемое формулой:
DX/Y = D[X/Y = yj] =
Приведенные выше формулы для числовых характеристик двумерного случайного вектора без труда обобщаются на случай n-мерного случайного вектора (Х1, Х2, ..., Хn). Так, например, вектор с неслучайными координатами (m1, m2, ..., mn), где mi - математическое ожидание СВ Хi, определяемое формулой
i = M[Xi] = ,
называется центром, рассеивания случайного вектора.
Ковариационной матрицей n-мерного случайного вектора = (Х1, Х2, ..., Хn) называется симметрическая матрица, элементы которой представляют собой ковариации соответствующих пар компонент случайного вектора:
K = ,
где Кij = M[ ] - ковариация i-й и j-й компонент.
Очевидно, что Кii = М[Xi2] -дисперсия i-й компоненты.
Корреляционной матрицей n-мерного случайного вектора называется симметрическая матрица, составленная из коэффициентов корреляции соответствующих пар компонент случайного вектора:
C = , rij = - коэффициент корреляции i-й и j-й компоненты.