Ірраціональні рівняння

Ірраціональними називають такі рівняння, у яких змінна знаходиться під знаком кореня. Наприклад, ірраціональні рівняння - student2.ru , ірраціональні рівняння - student2.ru .

!!! При розв’язуванні ірраціональних рівнянь обов’язковим є АБО знаходження ОДЗ рівняння, АБО перевірка знайдених коренів. Тому що при виконанні перетворень може порушуватись рівносильність рівнянь.

Основним методом розв’язування ірраціональних рівнянь є піднесення обох частин рівняння до одного степеня. На допомогу приходять формули скороченого множення ірраціональні рівняння - student2.ru ; ірраціональні рівняння - student2.ru

ПРИКЛАД 1. ірраціональні рівняння - student2.ru . Оскільки ірраціональні рівняння - student2.ru , а -4 ірраціональні рівняння - student2.ru 0, то рівність неможлива.

Відповідь: коренів немає.

ПРИКЛАД 2. ірраціональні рівняння - student2.ru . ірраціональні рівняння - student2.ru ; х-1=8; х=9.

Відповідь: 9.

ПРИКЛАД 3. ірраціональні рівняння - student2.ru . ірраціональні рівняння - student2.ru ; 2х+3= ірраціональні рівняння - student2.ru ; ірраціональні рівняння - student2.ru -2х-3= 0; х1=-1, х2=3.

Перевірка. При х=-1 маємо ірраціональні рівняння - student2.ru =-1 – неправильна рівність, отже, х=-1 - сторонній розв’язок. При х=3 маємо ірраціональні рівняння - student2.ru = 3 – правильна рівність, отже, х=3 – корінь.

Відповідь: 3.

ПРИКЛАД 4. ірраціональні рівняння - student2.ru + ірраціональні рівняння - student2.ru = 4 . Ізолюємо один корінь і піднесемо обидві частини рівняння до квадрата. ірраціональні рівняння - student2.ru = 4- ірраціональні рівняння - student2.ru ; . ірраціональні рівняння - student2.ru = ірраціональні рівняння - student2.ru ;

5х-1 = 16 - 8 ірраціональні рівняння - student2.ru + ірраціональні рівняння - student2.ru ; 5х-1 = 16 - 8 ірраціональні рівняння - student2.ru +х+3. Знову ізолюємо корінь і знову піднесемо обидві частини рівняння до квадрата. 8 ірраціональні рівняння - student2.ru = 16 +х+3-5х+1;

8 ірраціональні рівняння - student2.ru = 20 – 4х; 2 ірраціональні рівняння - student2.ru = 5-х; ірраціональні рівняння - student2.ru ; 4(х+3) = 25-10х+ ірраціональні рівняння - student2.ru ;

ірраціональні рівняння - student2.ru -14х+13=0; х1=1, х2=13.

Перевірка. х=1 – корінь; х= 13- сторонній розв’язок.

Відповідь: 1.

ПРИКЛАД 5. Розглянемо рівняння з кубічними коренями: ірраціональні рівняння - student2.ru .

( ірраціональні рівняння - student2.ru )3=13;

( ірраціональні рівняння - student2.ru )3+3( ірраціональні рівняння - student2.ru 2 ірраціональні рівняння - student2.ru + 3 ірраціональні рівняння - student2.ru )2+( ірраціональні рівняння - student2.ru )3 = 1;

2х-1 + 3 ірраціональні рівняння - student2.ru ірраціональні рівняння - student2.ru ( ірраціональні рівняння - student2.ru ) + х-1 = 1;

3 ірраціональні рівняння - student2.ru ірраціональні рівняння - student2.ru ( ірраціональні рівняння - student2.ru ) = 1-2х+1-х+1;

3 ірраціональні рівняння - student2.ru ірраціональні рівняння - student2.ru *1 = 3 – 3х; ірраціональні рівняння - student2.ru ірраціональні рівняння - student2.ru = 1 – х;

( ірраціональні рівняння - student2.ru ірраціональні рівняння - student2.ru )3=(1 – х)3; (2х – 1)(х – 1) = (1 – х)3;

2 – 2х – х + 1 = 1 – 3х + 3х2 – х3; х3 – х2 = 0; х1=1, х2=0.

Перевірка. Заміна ірраціональні рівняння - student2.ru порушує рівносильність, оскільки ця рівність виконується не при всіх значеннях х.

х=1 – корінь; х= 0- сторонній розв’язок.

Відповідь: 1.

Ще один метод розв’язування ірраціональних рівнянь – заміна змінної.

Якщо до рівняння змінна входить в одному і тому самому вигляді, то зручно відповідний вираз позначити новою змінною.

ПРИКЛАД 6. ірраціональні рівняння - student2.ru Нехай ірраціональні рівняння - student2.ru = t, тоді маємо ірраціональні рівняння - student2.ru Звідки

t1=-4, t2=2. Зробимо обернену заміну: ірраціональні рівняння - student2.ru = -4 – коренів немає; ірраціональні рівняння - student2.ru =2; х=2.

Відповідь: 2.

ПРИКЛАД 7. ірраціональні рівняння - student2.ru =4. Запишемо рівняння у вигляді: 3( ірраціональні рівняння - student2.ru )2 ірраціональні рівняння - student2.ru і зробимо заміну ірраціональні рівняння - student2.ru = t. Маємо: ірраціональні рівняння - student2.ru + t – 4 = 0; t1=1, t2 = ірраціональні рівняння - student2.ru .

Зробимо обернену заміну: ірраціональні рівняння - student2.ru = 1; х = 0; ірраціональні рівняння - student2.ru = ірраціональні рівняння - student2.ru – коренів немає.

Відповідь: 0.

ПРИКЛАД 8. ірраціональні рівняння - student2.ru Підкореневі вирази є взаємно оберненими, тому зробимо заміну ірраціональні рівняння - student2.ru , тоді ірраціональні рівняння - student2.ru , отримаємо рівняння t - ірраціональні рівняння - student2.ru = 1, розв’язавши яке отримуємо: t1=-1, t2=2. Виконавши обернену заміну, маємо х=2,5.

Відповідь: 2,5.

ПРИКЛАД 9. 2х2+6х -3 ірраціональні рівняння - student2.ru = 5. Запишемо 2(х2+3х) -3 ірраціональні рівняння - student2.ru = 5.

Заміна ірраціональні рівняння - student2.ru = t, тоді ірраціональні рівняння - student2.ru = t2, звідки ірраціональні рівняння - student2.ru = t2 ірраціональні рівняння - student2.ru , і рівняння приймає вигляд 2(t2 ірраціональні рівняння - student2.ru )-3t=5, звідки t1=1, t2=0,5.

Зробимо обернену заміну: ірраціональні рівняння - student2.ru = 1, ; х1=1, х2= -4; х1=-1, х2=3.

ірраціональні рівняння - student2.ru = ірраціональні рівняння - student2.ru ; х1,2= ірраціональні рівняння - student2.ru .

Відповідь: 1;- 4; ірраціональні рівняння - student2.ru .

Завдання:

1) Розібрати приклади 1-4.

2) Розв’язати № 616(1,3), 618( 1,3,7), №623 (1)

3) Розібрати приклади 6-8.

4) Розв’язати №641(1,2,5,9)

5) Розібрати приклад 5.

6) Розв’язати ірраціональні рівняння - student2.ru .

7) Розібрати приклад 9.

8) Розв’язати № 643(1,2)

Наши рекомендации