Собственные полупроводники
Химически чистые полупроводники, то есть полупроводники без примесей, называются собственными полупроводниками. Например, химически чистые кристаллы Si, Ge, а так же кристаллы химических соединений GaAs, JnP и ряд других.
При температуре абсолютного нуля T=0К валентная зона собственного полупроводника полностью заполнена электронами. Зона проводимости пуста. Поэтому при T=0К собственный полупроводник как и диэлектрик обладает нулевой проводимостью s = 1/r, где r - удельное сопротивление.
С повышением температуры возникают тепловые колебания атомов кристаллической решетки полупроводника. Электрон валентной зоны может получить от тепловых колебаний кристаллической решетки (поглотив фонон) энергию ³ Eg. Электрон в этом случае из валентной зоны может перейти в зону проводимости. В этой зоне множество свободных уровней энергии. Поэтому электроны зоны проводимости могут изменять энергию под действием электрического поля и участвовать в создании электрического тока. Отсюда их название – электроны проводимости.
В валентной зоне возникает незаполненное состояние, которое называют дыркой. В присутствии внешнего электрического поля ближайший к дырке электрон валентной зоны попадает в нее, оставляя при этом новую дырку, которую заполняет следующий электрон и так далее. Таким образом наличие дырки позволяет электронам валентной зоны изменять свое энергетическое состояние, то есть участвовать в создании электрического тока, Дырка при этом перемещается в направлении, противоположном движению электрона (рис.3.12). Следовательно, она ведет себя как носитель положительного заряда, по абсолютной величине равного заряду электрона.
Понятие «дырка» служит для описания поведения электрона валентной зоны. Электроны проводимости и дырки являются свободными носителями заряда в полупроводнике и обеспечивают в нем протекание электрического тока.
Вместе с рассмотренным процессом тепловой генерации электронов и дырок – электронно-дырочных пар – возникает противоположный процесс: рекомбинация электронов и дырок. Электрон зоны проводимости, двигаясь в объеме полупроводника, встречает дырку и переходит на ее место, заполняет свободное состояние в валентной зоне. При этом излишек энергии выделяется в виде фононов или фотонов. Одновременное действие процессов генерации и рекомбинации приводит к установлению в полупроводнике равновесной концентрации носителей заряда. В собственном полупроводнике равновесные концентрации электронов n0 и дырок p0 равны: n0=p0=ni; ni – эту величину назвали собственной концентрацией носителей заряда.
Ясно, что произведение
n0р0=ni2. (3.7)
Это важное равенство справедливо для полупроводника, находящегося в состоянии термодинамического равновесия, то есть когда на него не оказывается какое-либо физическое воздействие. Оно выполняется не только для собственного полупроводника, но и для любого примесного (смотри ниже). Равенство (3.7) широко используется в теории полупроводников и называется уравнением полупроводника или законом действующих масс по аналогии с терминологией химической термодинамики
Из изложенного выше можно сделать два важных вывода:
1. Проводимость полупроводников является проводимостью возбужденной. Она появляется под действием внешнего фактора, способного сообщить электронам валентной зоны энергию большую Eg – достаточную для их перехода из валентной зоны в зону проводимости. Это может быть нагрев полупроводника, облучение его светом и так далее.
2. Разделение тел на полупроводники и диэлектрики носит в значительной мере условный характер. Алмаз являющийся прекрасным диэлектриком при комнатной температуре, проявляет заметную проводимость при высоких температурах и ведет себя подобно полупроводнику.
Примесные полупроводники
Для придания полупроводнику требуемых электрофизических характеристик в него вводят примеси. Примесные атомы бывают двух типов.
Пусть часть атомов исходного полупроводника Si замещена атомами пятивалентного мышьяка As (рис.3.13). Четыре своих валентных электрона атом мышьяка использует для уста новления ковалентных связей с четыремя соседними атомами Si. Пятый электрон в образовании не участвует. Энергия связи его с ядром атома As уменьшается примерно в e2 раз, где e - диэлектрическая проницаемость Si (e » 12). Этот электрон образует энергетический уровень ЕД, расположенный в запрещенной зоне у дна зоны проводим
Величина DЕД=ЕС-ЕД » 0,049 эВ. При сообщении таким электронам энергии ³ DЕД они покидают атом As и переходят в зону проводимости, где становится свободными носителями заряда. Образующиеся при этом положительные ионы As в электропроводности не участвуют, так как связаны с кристаллической решеткой Si ковалентными связями.
Примеси, являющиеся источником электронов для зоны проводимости, называются донорными примесями или просто донорами. А энергетические уровни электронов этих примесей называются донорными уровнями и обозначаются ЕД.
Пусть теперь в решетке Si часть атомов полупроводника замещена трехвалентными атомами бора В (рис.3.15). Для установления связи с четырьмя ближайшими соседними атомами Si, атому В не хватает одного электрона. Недостающий электрон атом В может захватить у соседнего атома Si. Для этого электрону валентной зоны необходимо сообщить энергию »0,045 эВ. Появившаяся разорванная ковалентная связь у атома Si представляет собой дырку, возникшую в валентной зоне - свободный носитель заряда. Электрон, захваченный атомом В образует энергетический уровень ЕА, расположенный в запрещенной зоне вблизи потолка валентной зоны (рис.3.16). Величина DЕА=ЕА-ЕV»0,045 эВ равна энергии, которую должен получить электрон, чтобы его захватил атом В. Возникающий отрицательный ион В в проводимости не участвует, так как связан в кристалле ковалентными связями.
Примеси, захватывающие электроны из валентной зоны полупроводника, называются акцепторными примесями или просто акцепторами. Уровни этих примесей называются акцепторными и обозначаются ЕА.
Различие между собственными и примесными полупроводниками определяется степенью влияния примесей на проводимость. Если концентрация доноров NД>>ni, то основной вклад в электропроводность дают электроны зоны проводимости, так как n0>>р0. В этом случае имеем дело с полупроводником n-типа или электронным полупроводником. В полупроводнике n-типа электроны основные носители заряда, а дырки – неосновные.
Если же концентрация акцепторной примеси NА>>ni, то р0>>n0 и основной вклад в электропроводность дают дырки. Имеем полупроводник р-типа или дырочный полупроводник. В этом случае дырки - основные носители заряда, электроны - неосновные. Для примера рассмотрим Si-полупроводник с ni=1010 см-3. Пусть NД » 1013 см-3. В этом случае концентрация электронов, как будет показано ниже, n0» 1013см-3. Концентрация дырок согласно уравнению полупроводника (3.7) р0 = ni/n0 = 107см-3 и n0>>р0, полупроводник n-типа. Аналогично в случае акцепторной примеси.