Инженерные методы конструирования
Изыскание научно обоснованных, достаточно точных и удобных методов построения разверток деталей поверхности одежды всегда было одной из актуальных проблем разработки рациональной системы ее проектирования. От точности построения разверток поверхности существенно зависит расход материала, степень трудоемкости обработки изделия в процессе изготовления, качество посадки и технологической обработки, эстетические и эксплуатационные характеристики готового изделия.
Рис.8. Примеры развертывающихся поверхностей
Известно, что все поверхности с точки зрения построения разверток подразделяются на развертывающиеся и не развертывающиеся. При этом поверхность можно рассматривать как гибкую, но нерастяжимую и несжимаемую пленку. Развертывающимися называются такие поверхности, которые могут совмещены с плоскостью всеми своими точками, т.е. уложены на плоскость без разрывов и складок. Поверхность, которую невозможно совместить с плоскостью при укладывании, является не развертывающейся. Развертки таких поверхностей строят приближенно.
На практике различие между этими поверхностями несколько сглаживается, так как даже такие, теоретически развертываемые поверхности как, например, конические, не могут быть построены совершенно точно, а лишь с некоторым приближением к теоретическим разверткам, а с другой стороны — теоретически не развертываемые поверхности могут быть совмещены с плоскостью за счет свойств материала и технологических методов обработки этих разверток, от которых абстрагируется геометрия.
Поверхность фигуры человека, манекена, а также одежды представляет собой не геометрическую поверхность, и применительно к проектированию одежды может быть развернута лишь с некоторым приближением. Форму детали одежды из плоского материала получают либо путем конструктивного членения ее на части с применением таких элементов как швы, вытачки, складки, либо способом принудительного изменения геометрических размеров детали кроя на отдельных участках, используя растягивание или сутюживание как по основе и утку, так и в косом направлении. Методами начертательной геометрии развертку поверхности тела получить нельзя.
В практике применяют комбинированный способ: в зависимости от свойств самой ткани преобладают либо конструктивные элементы, либо деформация ткани (ВТО). И, кроме того, выбор того или иного способа получения формы одежды зависит от характера поверхности, ее кривизны, способности ткани создавать нужную форму за счет собственной деформации и методов конструирования.
На начальных этапах формирования инженерных методов конструирования одежды осуществлялись попытки найти принципы рационального геометрического построения разверток поверхности. Причем форма развертываемой поверхности одежды и свойства материала для ее изготовления оставались как бы за рамками исследований. В дальнейшем серьезное внимание стали уделять сетчатой структуре ткани, одевающая способность которой позволяла получать развертки деталей и узлов одежды любой сложности, не прибегая к большому количеству швов и вытачек, оптимизируя принудительное формование деталей. Использование одевающей способности ткани легло в основу методов получения разверток. Это свойство ткани позволяет развернуть деталь готового изделия и перевести ее в прямоугольную систему координат, дает возможность получить рациональную развертку детали на плоскости на основе инженерного решения геометрической задачи об одевании кривых поверхностей плоским материалом сетчатого строения.
Известно несколько инженерных методов конструирования разверток деталей одежды: триангуляции, секущих плоскостей, геодезических линий, вспомогательных линий развертывания (ЛР), расчета разверток деталей одежды по образцам моделей. Нет необходимости подробно пересказывать содержание каждого метода. Мы ограничимся лишь их перечислением и некоторыми иллюстрациями, чтобы представить объем, скрупулезность и научность проведенных исследований.
Метод триангуляции
Общим приемом построения приближенной технической развертки состоит в том, что заданную поверхность разбивают на отдельные элементы и заменяют их элементами условно развертывающихся поверхностей, которые затем развертывают. Точность аппроксимации зависит от количества числа элементов, разбивающих кривую поверхность.
Рис.9. Метод триангуляции
Метод секущих плоскостей
Предложенный в 1954 г. А.И. Ивановой, метод является одной из первых попыток получить развертку деталей одежды способами начертательной геометрии и черчения.
Каждый участок выделенной детали фигуры условно приравнивают к развертывающейся геометрической поверхности и последовательно развертывают и укладывают на плоскости. Трудоемкость и сложность взаимоувязки отдельных участков развертки детали между собой не позволяет использовать этот метод на практике.
Рис.10. Метод секущих плоскостей
Метод геодезических линий
Сущность метода заключается в моделировании на поверхности ряда геодезических линий с заданным шагом и последовательным построением разверток выделенных участков поверхности, ограниченных геодезическими линиями, на плоскости. Метод позволяет получить развертку поверхности детали, по которой можно определить величины необходимой технологической обработки: размеры вытачек, величину посадки или растяжения ткани. Этот способ в дальнейшем нашел свое применение при сканировании, получении информации о фигуре.
Рис.11. Метод геодезических линий