Информационная технология поддержки принятиярешений
Системы поддержки принятия решений и соответствующая им информационная технология появились усилиями в основном американских ученых в конце 70-х – начале 80-х гг., чему способствовали широкое распространение персональных компьютеров, стандартных пакетов прикладных программ, а также успехи в создании систем искусственного интеллекта.
Главной особенностью информационной технологии поддержки принятия решений является качественно новый метод организации взаимодействия человека и компьютера. Выработка решения, что является основной целью этой технологии, происходит в результате итерационного процесса, в котором участвуют:
• система поддержки принятия решений (СППР) в роли вычислительного звена и объекта управления;
• лица, принимающего решение и оценивающего полученный результат вычислений на компьютере.
Окончание итерационного процесса происходит по решению человека. В этом случае можно говорить о способности информационной системы совместно с пользователем создавать новую информацию для принятия решений.Дополнительно к этой особенности информационной технологии поддержки принятия решений можно указать еще ряд ее отличительных характеристик:
• ориентация на решение плохо структурированных (плохо формализованных) задач;
• сочетание традиционных методов доступа и обработки компьютерных данных с возможностями математических моделей и методами решения задач на их основе;
• направленность на непрофессионального пользователя компьютера;
• высокая адаптивность, обеспечивающая возможность приспосабливаться к особенностям имеющегося технического и программного обеспечения, а также требованиям пользователя.
Информационная технология поддержки принятия решений может использоваться на любом уровне управления. Решения, принимаемые на различных уровнях управления, часто должны координироваться, поэтому важной функцией и систем, и технологий является координация лиц, принимающих решения, как на разных уровнях управления, так и на одном уровне.
Основные компоненты
Рассмотрим структуру системы поддержки принятия решений (рисунок 3), а также функции составляющих ее блоков, которые определяют основные технологические операции.
Рисунок 3 – Основные компоненты информационной технологии поддержки принятия решений
В состав системы поддержки принятия решений входят три главных компонента: база данных, база моделей и программная подсистема, которая состоит из системы управления базой данных (СУБД), системы управления базой моделей (СУБМ) и системы управления интерфейсом между пользователем и компьютером.
База данных играет в информационной технологии поддержки принятия решений важную роль. Данные могут использоваться непосредственно пользователем для расчетов при помощи математических моделей. Рассмотрим источники данных и их особенности.
1) Часть данных поступает от информационной системы операционного уровня, чтобы использовать их эффективно, эти данныедолжны быть предварительно обработаны.
2) Для функционирования системы поддержки принятия решений требуются и другие внутренние данные, например инженерные данные, которые должны быть своевременно собраны, введены и поддержаны.
3) Важное значение, особенно для поддержки принятия решений на верхних уровнях управления, имеют данные из внешних источников. В отличие от внутренних данных внешние данные обычно приобретаются у специализирующихся на их сборе организаций.
4) В настоящее время широко исследуется вопрос о включении в базу данных еще одного источника данных – документов, включающих в себя записи, письма, контракты, приказы и т.п. Если содержание этих документов будет записано в памяти и затем обработано по некоторым ключевым характеристикам, то система получит новый мощный источник информации.
База моделей. Целью создания моделей являются описание и оптимизация некоторого объекта или процесса. Использование моделей обеспечивает проведение анализа в системах поддержки принятиярешений. Модели, базируясь на математической интерпретации проблемы, при помощи определенных алгоритмов способствуют нахождению информации, полезной для принятия правильных решений.
Использование моделей в составе информационных систем началось с применения статистических методов и методов финансового анализа, которые реализовывались командами обычных алгоритмических языков. Системы программирования, созданные специально для построения моделей, дают возможность построения моделей определенного типа, обеспечивающих нахождение решения при гибком изменениипеременных.
Существует множество типов моделей и способов их классификации, например, по цели использования, области возможных приложений, способу оценки переменных и т. п.
По цели использования модели подразделяются на оптимизационные, связанные с нахождением точек минимума или максимума некоторых показателей, и описательные, описывающие поведение некоторой системы и не предназначенные для целей управления(оптимизации).
По способу оценки модели классифицируются на детерминированные, использующие оценку переменных одним числом при конкретных значениях исходных данных, и стохастические, оценивающие переменные несколькими параметрами, так как исходные данные заданы вероятностными характеристиками.Детерминированные модели более популярны, потому что они менее дорогие, их легче строить и использовать, к тому же часто с их помощью обеспечивается вполне достаточная информация для принятия решения.
По области возможных приложений модели разбиваются на специализированные, предназначенные для использования только одной системой, и универсальные – для использования несколькими системами.Специализированные модели более дорогие, они обычно применяются для описания уникальных систем и обладают большейточностью.
В системах поддержки принятия решения база моделей состоит из стратегических, тактических и оперативных моделей, а также математических моделей в виде совокупности модельных блоков, модулей и процедур: используемых как элементы для их построения.
Стратегические модели используются на высших уровнях управления для установления целей организации, объемов ресурсов, необходимых для их достижения, а также политики приобретения и использования этих ресурсов. Для стратегических моделей характерны значительная широта охвата, множество переменных, представление данных в сжатой агрегированной форме. Часто эти данные базируются на внешних источниках и могут иметь субъективный характер. Горизонт планирования в стратегических моделях, как правило, измеряется в годах. Эти модели обычно детерминированные, описательные, специализированные для использования на одной определенной фирме.
Тактические модели применяются для распределения и контроля использования имеющихся ресурсов. Данные модели применимы обычно лишь к отдельным частям организации и могут также включать в себя агрегированные показатели. Временной горизонт, охватываемый тактическими моделями от одного месяца до двух лет. Здесь также могут потребоваться данные из внешних источников, но основное внимание при реализации данных моделей должно быть уделено внутренним данным. Обычно тактические модели реализуются как детерминированные, оптимизационные и универсальные.
Оперативные модели используются на низших уровнях управления для поддержки принятия оперативных решений с горизонтом, измеряемым днями и неделями. Оперативные модели обычно используют для расчетов внутренние данные организации. Как правило, Оперативные модели являются универсальными, т.е. могут быть использованы в различных организациях.
Математические модели состоят из совокупности модельных блоков, модулей и процедур, реализующих математические методы. Сюда могут входить процедуры линейного программирования, статистического анализа временных рядов, регрессионного анализа и т.п. – от простейших процедур до сложных пакетов прикладных программ.
2.6. Экспертные системы
Наибольший прогресс среди компьютерных информационных систем отмечен в области разработки экспертных систем (ЭС), основанных на использовании элементов искусственного интеллекта. Экспертные системы дают возможность менеджеру или специалисту получать консультации экспертов по любым проблемам, на основе которых этими системами накоплены знания.
Под искусственным интеллектом(ИИ) обычно понимают способности компьютерных систем к таким действиям, которые назывались бы интеллектуальными, если бы исходили от человека. Чаще всего здесь имеются в виду способности, связанные с человеческим мышлением. Работы в области искусственного интеллекта неограничиваются экспертными системами. Они также включают в себя создание роботов, систем, моделирующих нервную систему человека, его слух, зрение, обоняние, способность к обучению.
Решение специальных задач требует специальных знаний. Главная идея использования технологии экспертных систем заключается в том, чтобы получить от эксперта его знания и, загрузив их в память компьютера, использовать всякий раз, когда в этом возникнет необходимость. Являясь одним из основных приложений искусственного интеллекта, экспертные системы представляют собой компьютерные программы, трансформирующие опыт экспертов в какой-либо области знаний в форму эвристических правил. На практике ЭС используются прежде всего как системы-советчики в тех ситуациях, где специалист сомневается в выборе правильного решения. Экспертные знания, хранящиеся в памяти системы, более глубокие и полные, чем соответствующие знания пользователя.
ЭС находят распространение при решении задач с принятием решений в условиях неопределенности (неполноты) для распознавания образов, в прогнозировании, диагностике, планировании, управлении, конструировании и т.д. Типичная экспертная система состоит из интерпретатора, БД (базы данных), БЗ (базы знаний), компонентов приобретения знаний, объяснительного и диалогового компонентов.
БД предназначена для хранения исходных и промежуточных данных, используемых для решения задач, фактографических данных. Интерпретатор, используя исходные данные из БД и знания из Б3, обеспечивает решение задач для конкретных ситуаций. Компонент приобретения знаний автоматизирует процесс наполнения Б3. Объяснительный компонент объясняет, как система получила решение задачи (или почему не получила) и какие знания она при этом использовала. Диалоговый компонент обеспечивает диалог между экспертной системой и пользователем в процессе решения задачи и приобретения знаний.
Экспертные системы создаются для решения разного рода задач профессиональной деятельности человека, и в зависимости от этого выполняют разные функции.
Типы экспертных систем
Можно назвать несколько типов современных экспертных систем.
1) Экспертные системы первого поколения. Предназначены для решения хорошо структурированных задач, требующих небольшого объема эмпирических знаний. Сюда относятся классификационные задачи и задачи выбора из имеющегося набора вариантов.
2) Оболочки ЭС. Имеют механизм ввода-вывода, но Б3 пустая. Требуется настройка на конкретную предметную область. Знания приобретаются в процессе функционирования ЭС, способной к самообучению.
3) Гибридные ЭС. Предназначены для решения различных задач с использованием Б3. Это задачи с использованием методов системного анализа, исследования операций, математической статистики, обработки информации. Пользователь имеет доступ к объективизированным знаниям, содержащимся в Б3 и пакетах прикладных программ.
4) Сетевые ЭС. Между собой связаны несколько экспертных систем. Результаты решения одной из них являются исходными данными для другой системы. Эффективны при распределенной обработке информации.
При разработке экспертных систем должны участвовать: эксперт той предметной области, задачи которой будет решать система; инженер по знаниям – специалист по разработкам систем; программист – специалист по разработке инструментальных средств.
Эксперт определяет знания, то есть описывает предметную область в виде совокупности данных и правил, обеспечивает полноту и правильность введенных в экспертную систему знаний. Данные определяют объекты, их характеристики и значения. Правила указывают на способы манипулирования данными.
Инженер по знаниям помогает эксперту: выявить и структурировать знания, необходимые для функционирования экспертной системы; осуществить выбор инструментальных средств, которые наиболее эффективны для решения задач в данной предметной области; указать способы представления знаний. Программист разрабатывает инструментальную среду, включающую все компоненты экспертной системы, производит ее сопряжение с другими существующими системами.
Виды знаний
1) Понятийные знания. Это набор понятий, которыми пользуется ЛПР, работающий в некоторой области интеллектуальной, управляющей деятельности, а также свойства и взаимосвязи этих понятий. Эта категория знаний в основном вырабатывается в сфере фундаментальных наук.
2) Конструктивные знания (близкие к понятийным знаниям). Представляют собой знания о структуре и взаимодействии частей различных объектов. Они в основном составляют содержание технических, прикладных наук. К примеру, если взять программирование, то понятийное знание – знание о структуре операторов, данных, языка программирования. Конструктивное знание – это знание об устройстве конкретных программ, о типичных алгоритмах.
3) Процедурные знания. К ним относятся методические правила решения различных задач, с которыми ЛПР уже сталкивался и их решать. В производственной сфере аналогом процедурных знаний являются технологические знания различных производственных процессов. Процедурные знания - это опыт интеллектуальной, управляющей деятельности ЛПР в определенной предметной области.
4) Фактографические знания. Они включают в себя количественные и качественные характеристики конкретных объектов, явлений и их элементов. Их накопление ведется в виде таблиц, справочников, файлов, БД.