Галактики и их классификация. наша галактика.
• Спиральные
• Эллиптические
• Неправильные
Спиральные галактики очень красивы. В центре - яркое ядро (большое тесное скопление звезд). Из ядра выходят спиральные, закручивающиеся вокруг него ветви. Они состоят из молодых звезд и облаков нейтрального газа, в основном - водорода. Все ветви - а их может быть одна, две или несколько - лежат в плоскости, совпадающей с плоскостью вращения галактики. Поэтому галактика имеет вид сплющенного диска.
Сейчас большинство исследователей галактик склоняются к мнению, что галактические спирали представляют собой волны повышенной плотности вещества. Они подобны волнам на поверхности воды. А те, как известно, при своем движении не переносят вещество.
Галактики, именуемые эллиптическими , по внешнему виду существенно отличаются от спиральных. На фотографиях они выглядят как эллипсы с разной степенью сжатия. Среди них есть галактики, похожие на линзу, и почти шаровые звездные системы. Встречаются и гиганты, и карлики. Примерно четверть из наиболее ярких галактик относят к числу эллиптических. Для многих из них характерен красноватый цвет. Долгое время астрономы считали это одним из свидетельств того, что эллиптические галактики в основном состоят из старых (красных) звезд. Наконец обратимся к третьему (по классификации Хаббла) типу галактик - неправильным (или иррегулярным). Они отличаются хаотической, клочковатой структурой и не имеют какой-либо определенной формы.
Именно такими оказались две самые близкие к нам сравнительно небольшие галактики - Магеллановы Облака. Это спутники Млечного Пути. Они видны невооруженным глазом, правда, только на небе Южного полушария Земли.
Галактика Млечный Путь, называемая также просто Галактика (с заглавной буквы) — гигантская звёздная система, в которой находится Солнечная система, все видимые невооружённым глазом отдельные звёзды, а также огромное количество звёзд, сливающихся вместе и наблюдаемых в виде млечного пути.
Млечный Путь — одна из многочисленных галактик Вселенной. Является спиральной галактикой с перемычкой типа SBbc по классификации Хаббла
Структура Галактики
Диаметр Галактики составляет около 30 тысяч парсек (порядка 100000 световых лет) при оценочной средней толщине порядка 1000 световых лет. Галактика содержит, по самой низкой оценке, порядка 200 миллиардов звёзд (современная оценка колеблется в диапазоне предположений от 200 до 400 миллиардов). Основная масса звёзд расположена в форме плоского диска. По состоянию на январь 2009, масса Галактики оценивается в 3×1012 масс Солнца[1], или 6×1042 кг. Большая часть массы Галактики содержится не в звёздах и межзвёздном газе, а в несветящемся гало из тёмной материи.
Галактические спутники
Учёные из Калифорнийского университета при исследовании[источник не указан 19 дней] распространённости водорода в областях, подвергающихся искажению, обнаружили, что эти деформации тесно связаны с положением орбит двух галактик-спутников Млечного Пути — Большого и Малого Магеллановых облаков, которые регулярно проходят сквозь окружающую его тёмную материю. Имеются и иные, ещё менее близкие к Млечному Пути галактики, однако их роль (спутники или поглощаемые Млечным Путём тела) не ясна.
Млечный Путь как небесное явление
Млечный Путь наблюдается на небе как неярко светящаяся диффузная белесая полоса, проходящая приблизительно по большому кругу небесной сферы. В северном полушарии Млечный Путь пересекает созвездия Орла, Стрелы, Лисички, Лебедя, Цефея, Кассиопеи, Персея, Возничего, Тельца и Близнецов; в южном — Единорога, Кормы, Парусов, Южного Креста, Циркуля, Южного Треугольника, Скорпиона и Стрельца. В Стрельце находится галактический центр
Рождение звезд в галактиках происходит непрерывно. Этот процесс компенсирует также непрерывно происходящую смерть звезд. Поэтому галактики состоят из старых и молодых звезд. Самые старые звезды сосредоточены в шаровых скоплениях, их возраст сравним с возрастом галактики. Термоядерная реакция является источником собственного свечения звезд.
Звезды рождаются из космического вещества в результате его конденсации под действием гравитационных, магнитных и других сил. Под влиянием сил всемирного тяготения из газового облака образуется плотный шар — протозвезда, эволюция которой проходит три этапа.
Первый этап эволюции связан с обособлением и уплотнением космического вещества. Второй представляет собой стремительное сжатие протозвезды. В какой-то момент давление газа внутри про-тозвезды возрастает, что замедляет процесс ее сжатия, однако температура во внутренних областях пока остается недостаточной для начала термоядерной реакции. На третьем этапе протозвезда продолжает сжиматься, а ее температура — повышаться, что приводит к началу термоядерной реакции. Давление газа, вытекающего из звезды, уравновешивается силой притяжения, и газовый шар перестает сжиматься. Образуется равновесный объект — звезда. Такая звезда является саморегулирующейся системой. Если температура внутри не повышается, то звезда раздувается. В свою очередь, остывание звезды приводит к ее последующему сжатию и разогреванию, ядерные реакции в ней ускоряются. Таким образом, температурный баланс оказывается восстановлен. Процесс преобразования протозвезды в звезду растягивается на миллионы лет, что сравнительно немного по космическим масштабам.
С момента начала термоядерной реакции, превращающей водород в гелий, звезда типа нашего Солнца переходит на так называемую главную последовательность, в соответствии с которой будут изменяться с течением времени характеристики звезды: ее светимость, температура, радиус, химический состав и масса. После выгорания водорода в центральной зоне у звезды образуется гелиевое ядро. Водородные термоядерные реакции продолжают протекать, но только в тонком слое вблизи поверхности этого ядра. Ядерные реакции перемещаются на периферию звезды. Выгоревшее ядро начинает сжиматься, а внешняя оболочка — расширяться. Оболочка разбухает до колоссальных размеров, внешняя температура становится низкой, и звезда переходит в стадию красного гиганта. С этого момента звезда выходит на завершающий этап своей жизни. Наше Солнце это ждет примерно через 8 млрд. лет. При этом его размеры увеличатся до орбиты Меркурия, а может быть, и до орбиты Земли, так что от планет земной группы ничего не останется (или останутся оплавленные камни).
16. Солнечная система. Законы небесной механики – законы Кеплера. Солнечно-земные связи. Учение Чижевского. Ракетно-космические технологии.
Солнечная система - это система небесных тел (Солнце, планеты, спутники планет, кометы, метеоритные тела, космическая пыль), двигающихся в области преобладающего гравитационного влияния Солнца. Наблюдаемые размеры Солнечной системы определяются орбитой Плутона - около 40 а.е. Однако сфера, в пределах кот. возможно устойчивое движение небесных тел вокруг Солнца простирается почти до ближайших звезд. В эту группу входят Солнце, 9 больших планет (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон.), десятки спутников планет, тысячи малых планет (астероиды), сотни комет и множество метеоритных тел. К 1979 г. было известно 34 спутника и 2000 астероидов. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела - Солнца. Наиболее близкие к Солнцу планеты - Меркурий и Венера - очень медленно вращаются вокруг оси, с периодом в десятки - сотни земных суток. Медленное вращение этих планет связано с их резонансными взаимодействиями с Солнцем и друг с другом. А относительно малые размеры Марса не позволяют ему удержать плотную атмосферу. В атмосфере Земли насыщенные пары создают облачный слой. Облака Земли входят важнейшим элементом в круговорот воды, происходящий на нашей планете в системе гидросфера - атмосфера - суша.
В то время как движение Солнца и Луны всегда происходит в одном направлении - с запада на восток (прямое движение), движение планет гораздо сложнее и временами совершается в обратном направлении (попятное движение). Солнечная система является объектом изучения небесной механики. Небесная механика – раздел астрономии, изучающий движения тел Солнечной системы в гравитационном поле, в том числе движения искусственных небесных тел. В начале XVII века Иоганном Кеплером было открыто 3 основных кинематических закона движения планет:
1) планеты вокруг Солнца движутся по эллиптическим орбитам, в одном из фокусов которого находится Солнце;
2) радиус вектор планеты за одинаковые промежутки времени описывает равные площади;
3) квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит.
Эти законы являются основой расчета движения планет вокруг солнца, но все ни ориентированы на невозмущенное движение и непосредственно могут быть использованы только для расчетов орбит лишь в первом приближении, т.е. рассматривая лишь поле тяготения Солнца.
Орбиты, по которым могут двигаться тела вокруг солнца, бывают круговыми, эллиптическими, параболическими и гиперболическими. Все тела, стационарно находящиеся в Солнечной системе, движутся по эллиптическим орбитам. Спутники планет движутся по эллиптическим орбитам вокруг своих планет, которые находятся в одном из фокусов этих орбит.
Космические скорости – критические значения скоростей космических тел, при которых тело (комета или искусственный аппарат) переходит на другой тип орбиты. При достижении первой космической («круговой») скорости, направленной перпендикулярно направлению к центру Земли, аппарат переходит на круговую орбиту, а при меньшей скорости – на эллиптическую орбиту, попадая затем в плотные слои атмосферы.
При второй космической скорости («скорости освобождения») тело будет двигаться по параболической орбите и освободится от гравитационного влияния тела.
Третья же косм. скорость определяется из условия, что тело способно освободиться от гравитационного влияния Солнца и покинуть пределы Солнечной системы.
Солнечно-земные связи- система прямых или опосредованных физ. связей между гелио- и геофизическими процессами. Земля получает от Солнца не только свет и тепло, обеспечивающие необходимыйуровень освещенности и ср. темп-ру ее поверхности, но и подвергается комбинированному воздействию УФ- и рентгеновского излучения, солнечного ветра, солнечных космических лучей . Вариации мощности этих факторов при изменении уровня солнечной активности вызывают цепочку взаимосвязанных явлений в межпланетном пространстве, в магнитосфере, ионосфере, нейтральной атмосфере, биосфере, гидросфере и, возможно, литосфере Земли. Изучение этих явлений и составляет суть проблемы С.-з.с. Строго говоря, Земля оказывает некоторое обратное (по крайней мере, гравитационное) воздействие на Солнце, однако оно ничтожно мало, так что обычно рассматривают только воздействие солнечной активности на Землю. Это воздействие сводится либо к переносу от Солнца к Земле энергии, выделяющейся в нестационарных процессах на Солнце (энергетич. аспект С.-з.с.), либо к перераспределению уже накопленной энергии в магнитосфере, ионосфере и нейтральной атмосфере Земли (информац. аспект). Перераспределение энергии может происходить либо плавно (ритмич. колебания геофизич. параметров), либо скачкообразно (триггерный механизм).
А. Л. Чижевский
Колебания космической радиации, солнечной электромагнитной активности, температуры окружающей среды, степени влажности воздуха, атмосферного давления и т.д. оказываются причинами колебания в состоянии многих функций живого организма и, в конечном счёте, отражаются на его общем самоощущении и поведении. Тем самым Чижевский делает принципиально важный для современной науки шаг. Он впервые выдвигает и обосновывает положение, согласно которому понятие внешней среды и связи с ней жизни, живого должно быть расширено за пределы земли. В это понятие необходимо включить как околоземное пространство, являющееся непосредственным окружением биосферы, так и, по сути дела, весь Космос с его физическими полями, телами, потоками летящих отовсюду элементарных частиц, электронов, ионов.
Динамика гелиофизической активности, таким образом, определяет характер развития многих земных процессов (от сугубо физических до психических и социальных). Девять раз в столетие, по два-три года каждый, солнечные пертурбации посылают в пространство, образно говоря, осколки атомного и ядерного распада высоких энергий, сильные фотонные и радио излучения. Соответственно, каждый раз на протяжении двух-трёх лет все явления земной неорганической и органической природы приходят в возбуждение (магнитные и электрические бури, землетрясения, смерчи, наводнения, пожары лесов и т.п.). Активизируются микробы и вирусы, по всем континентам прокатываются эпидемии и пандемии, обостряются хронические заболевания, возрастает общая смертность во всех странах. Нервная система, будучи чувствительнейшим прибором живых организмов, испытывает повышенные нагрузки. Социальное поведение людей так же модифицируется, поскольку человеческий организм резонирует в соответствии с внешней космической средой. Однако разум человека может находить и находит способы освобождения от некоторых отрицательных воздействий этой среды. Основные параметры ритма, с помощью которых учёные-естественники ведут наблюдения, сравнивают между собой различные явления и процессы, - это длительность периода или частота повторения процесса, фаза и амплитуда колебаний. Знание частоты, фазы, амплитуды как основных темпоральных характеристик ритмических колебаний даёт возможность вполне определённо судить о периодичности и ритмике данного явления, сопоставлять его с другими, предыдущими или последующими явлениями, постигать их особенности.
Космический полёт — это путешествие или транспортировка в или через космос. Чёткая граница между Землёй и космосом отсутствует, и Международной авиационной федерацией была принята границей высота в 100 км от поверхности Земли. Чтобы на такой высоте летательный аппарат летел благодаря действию аэродинамических сил, необходимо иметь первую космическую скорость[1][2], что делает полёт скорее орбитальным, чем аэродинамическим[3][4]. Классическое разделение между авиа- и космическим полётами всё больше размывается благодаря развитию суборбитальных космических кораблей и орбитальных самолётов.
Различают орбитальный и суборбитальный космический полёт. Для достижения орбиты космический аппарат должен на минимальной высоте достичь первой космической скорости около 7,9 км/с в горизонтальном направлении, чтобы он стал искусственным спутником Земли. Если скорость будет меньше, то траектория станет баллистической. Чтобы достигнуть такой высокой скорости, на ракета-носителях применяют принцип многоступенчатости. Запуск такой ракеты производится с так называемой стартовой установки (англ. Launch pad, нем. Startrampe).
Чтобы снизить стоимость космических полётов, пытаются разработать многоразовый транспортный космический корабль, который может стартовать и приземляться горизонтально, как самолёт. Эти так называемые орбитальные самолёты, которые используют дополнительно воздушно-реактивные двигатели для подъёма.
[править]В космосе
Каждый рукотворный объект, неважно космический корабль, станция или спутник, нуждаются как минимум в следующих компонентах:
Система терморегулирования, поскольку обмен теплом в вакууме может производиться только через излучение.
Система жизнеобеспечения, для пилотируемого аппарата или в случае наличия на борту животных.
Система связи.
Источник энергии.
Защита от космических лучей.
Раке́та (от итал. rocchetta — маленькое веретено через нем. Rakete или нидерл. raket) — летательный аппарат, двигающийся в пространстве за счёт действия реактивной тяги, возникающей при отбросе ракетой части собственной массы (рабочего тела). Полёт ракеты не требует обязательного наличия окружающей воздушной или газовой среды и возможен не только в атмосфере, но и в вакууме. Словом ракета обозначают широкий спектр летающих устройств от праздничной петарды до космической ракеты-носителя.
В военной терминологии слово ракета обозначает класс, как правило, беспилотных летательных аппаратов, применяемых для поражения удалённых целей и использующих для полёта принцип реактивного движения. В связи с разнообразным применением ракет в вооружённых силах, различными родами войск, образовался широкий класс различных типов ракетного оружия.
17. Гравитационное взаимодействие тел. Закон всемирного тяготения Ньютона. Космические скорости.
В современной физике имеются весьма серьёзные проблемы в отношении гравитационного взаимодействия тел. Прежде всего, до сих пор не создано общепризнанной физической теории тяготения, т.е. теории, объясняющей природу механизма тяготения. Ни законы Ньютона, ни Общая теория относительности Эйнштейна не раскрывают механизма тяготения, а другие теории официальной наукой не рассматриваются. Исаак Ньютон открыл Закон всемирного тяготения, выраженный им в следующей математической формуле: F=G*(m1*m2)/R2. Здесь в числителе произведение m1 и m2 масс взаимно действующих тел, а в знаменателе – квадрат расстояния между ними, G – коэффициент в этой формуле, так называемая гравитационная постоянная (постоянная тяготения). Закон Ньютона не был теоретическим в современном смысле этого слова: он являлся математическим описанием опытного факта.
В дальнейшем представления о тяготении были несколько развиты. Были введены представления о напряженности поля тяготения и его потенциале:
напряженность грав. поля = отношению силы тяготения, действующей на материальную точку, в величине её массы и представляет собой векторную величину :g= F/m= G*M/R2
Потенциал поля тяготения – величина скалярная, суммируемая алгебраически в каждой точке пространства от всех масс. Анализ следствий из этого положения привел в 19в. к представлениям о так называемом гравитационном парадоксе. Остановлюсь на нем чуть подробнее.
В конце XIX в. немецкий астроном Х.Зелигер обратил внимание и на другой парадокс, неизбежно вытекающий из представления о бесконечности Вселенной. Нетрудно подсчитать, если опираться на Закон всемирного тяготения Ньютона, что в бесконечной Вселенной с равномерно распределенными в ней небесными телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной. Результат зависит от способа вычислений, причем в этом случае относительные скорости небесных тел могли бы быть бесконечно большими. Так как ничего похожего в космосе не наблюдается, Х.Зелигер сделал вывод, что, количество небесных тел ограничено, а значит. Вселенная не бесконечна. В конечном счете, причина парадокса – в идеализации Закона Ньютона, а поскольку закон на самом деле не является всемирным, то и гравитационного парадокса в природе не существует.
Несмотря на победы, на Законе всемирного тяготения лежала мрачная тень с самого момента рождения. Этой тенью было вытекающее из закона мгновенное дальнодействие. Сила тяготения мгновенно, с бесконечной скоростью передавалась на любые расстояния, при этом совершенно неясно, как она преодолевает пространство. Сила передается телу воздействием на него другого тела – это положение было аксиомой для Галилея, на него опираются законы механики самого Ньютона, а вот Закон всемирного тяготения выкидывает прочь эту аксиому.
Для тяготения Ньютон отказался искать причину в действиях эфира, хотя делал это в отношении многих других явлений. «Причину же этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю».
Сомнения, навеянные гравитационным парадоксом, были развеяны, как представляют современные ученые, с появлением Общей теории относительности. Она была создана А.Эйнштейном в 1916г. на основе специальной ТО, созданной на 11 лет раньше.
Если СТО рассматривала особенности изменения параметров и взаимодействия тел, движущихся с околосветовыми скоростями, то ОТО распространила положения специальной теории на явления гравитации. При этом в основу всех рассуждений ОТО изначально положен инвариант (неизменный при любых преобразованиях параметр) – четырехмерный интервал, определяемый соотношением:
ds2 = dx2 + dy2 + dz2 – (cdt)2 =const, где с – скорость света.
ТО продекларировала, что скорость распространения любого взаимодействия не может быть больше скорости света. Пространство при наличии гравитационного потенциала становится не евклидовым, а искривленным, и степень этой кривизны определяется потенциалом тяготения. Тела в таком пространстве движется по криволинейным траекториям, даже свет испытывает отклонение. Тяготение таким образом объясняется наличием массы в пространстве, которое искривляется и заставляет другие массы притягиваться к телу, исказившему пространство.
Однако никакого физического механизма не предлагается, поиски физ. причин замещены рассуждениями об относительности движения и о «кривизне пространства», которое вызывают гравитационные массы. Возникает вопрос: относительно чего искривляется пространство; и использование скорости света непонятно, т.к. электромагнитная величина не может быть использована в теории тяготения. Тяготение явл. другим фундаментальным взаимодействием, не электромагнитным. К тому же утверждения Эйнштейна о том, что скорость распространения гравитации равна скорости света, опровергается опытом.
Т.о., исследования о разработке физической теории тяготения должны быть возобновлены на основе представлений об эфире – мировой среде.
Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) — это минимальная скорость, при которой какое-либо тело в свободном движении с поверхности небесного тела сможет:
Первая космическая скорость (круговая скорость) — скорость, которую необходимо придать объекту, который после этого не будет использовать реактивное движение, чтобы вывести его на круговую орбиту (пренебрегая сопротивлением атмосферы и вращением планеты). Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.
В инерциальной системе отсчёта на объект, движущийся по круговой орбите вокруг Земли будет действовать только одна сила — сила тяготения Земли. При этом движение объекта не будет ни равномерным, ни равноускоренным. Происходит это потому, что скорость и ускорение (величины не скалярные, а векторные) в данном случае не удовлетворяют условиям равномерности/равноускоренности движения — то есть движения с постоянной (по величине и направлению) скоростью/ускорением. Действительно — вектор скорости будет постоянно направлен по касательной к поверхности Земли, а вектор ускорения — перпендикулярно ему к центру Земли, при этом по мере движения по орбите эти векторы постоянно будут менять свое направление. Поэтому в инерциальной системе отсчета такое движение часто называют «движение по круговой орбите с постоянной по модулю скоростью»
Часто для удобства вычисления первой космической скорости переходят к рассмотрению этого движения в неинерциальной системе отсчета — относительно Земли. В этом случае объект на орбите будет находиться в состоянии покоя, так как на него будут действовать уже две силы: центробежная сила и сила тяготения. Соответственно, для вычисления первой космической скорости необходимо рассмотреть равенство этих сил.
где m — масса объекта, M — масса планеты, G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость, R — радиус планеты. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 371 км), найдем
7,9 км/с
Первую космическую скорость можно определить через ускорение свободного падения — так как g = GM/R², то
.
Космические скорости могут быть вычислены и для поверхности других космических тел. Например на Луне v1 = 1,680 км/с, v2 = 2,375 км/с
Вторая космическая скорость (параболическая скорость, скорость освобождения, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала по сравнению с массой небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела. Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).
Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой. Для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца. Для Солнца вторая космическая скорость составляет 617,7 км/с.
Параболической вторая космическая скорость называется потому, что тела, имеющие при старте скорость, в точности равную второй космической, движутся по дуге параболы относительно небесного тела. Однако, если энергии телу придано чуть больше, его траектория перестает быть параболой и становится гиперболой; если чуть меньше, то она превращается в эллипс. В общем случае все они являются коническими сечениями.
Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё избесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния.
Запишем закон сохранения энергии
где слева стоят кинетическая и потенциальная энергии на поверхности планеты (потенциальная энергия отрицательна, так как точка отсчета взята на бесконечности), справа то же, но на бесконечности (покоящееся тело на границе гравитационного влияния — энергия равна нулю). Здесь m — масса пробного тела, M — масса планеты, R — радиус планеты, G —гравитационная постоянная, v2 — вторая космическая скорость.
Решая это уравнение относительно v2, получим
Между первой и второй космическими скоростями существует простое соотношение:
Квадрат скорости убегания равен удвоенному ньютоновскому потенциалу в данной точке (например, на поверхности планеты):
Тре́тья косми́ческая ско́рость (гиперболическая) — минимально необходимая скорость находящегося у поверхности Земли тела без двигателя, позволяющая преодолеть притяжение Солнца и уйти за пределы Солнечной системы в межзвёздное пространство[1].
Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты, космический аппарат может достичь третьей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с. Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует). При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца.
Траектория такого аппарата будет частью дуги параболы (скорость убывает к нулю асимптотически).
Первым земным космическим аппаратом, достигшим третьей космической скорости, стал американский Пионер-10.
Четвёртая космическая скорость — минимально необходимая скорость тела, позволяющая преодолеть притяжение галактики в данной точке. Численно равна квадратному корню из гравитационного потенциала в данной точке галактики (если выбрать гравитационный потенциал равным нулю на бесконечности).
Четвёртая космическая скорость не постоянна для всех точек галактики, а зависит от координаты. По оценкам, в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра Галактики, но и от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса. Вне диска Галактики распределение масс приблизительно сферически симметрично, как следует из измерений скоростей шаровых скоплений и других объектов сферической подсистемы.
18.Явления самоорганизации в живой и неживой природе.Синергетика и её практические применение в технике и технологиях.
Самоорганиза́ция — процесс упорядочения элементов одного уровня в системе за счёт внутренних факторов, без внешнего специфического воздействия (изменение внешних условий может также быть стимулирующим воздействием). Результат - появление единицы следующего качественного уровня.
В зависимости от подхода к описанию самоорганизации в определение включают характеристики системы, тип внутреннего фактора, особенности процесса.
Синерге́тика (от др.-греч. συν- — приставка со значением совместности и ἔργον — «деятельность») — междисциплинарное направление научных исследований, задачей которого является изучение природных явлений и процессов на основе принципов самоорганизации систем (состоящих из подсистем). «…Наука, занимающаяся изучением процессов самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природы…».
Синергетика изначально заявлялась как междисциплинарный подход, так как принципы, управляющие процессами самоорганизации, представляются одними и теми же (безотносительно природы систем), и для их описания должен быть пригоден общий математический аппарат.
Во всех рассматриваемых синергетикой системах процесс самоорганизации идет обязательно с участием большого числа объектов (атомов, молекул или более сложных преобразований) и, следовательно, определяется совокупным, кооперативным действием. Чтобы подчеркнуть это обстоятельство, профессор Штутгартского университета Г. Хакен ввел специальный термин «синергетика». С одной стороны, имеется в виду сотрудничество ученых разных специальностей, разных областей знания, подоплекой которого выступает общность феномена самоорганизации. С другой стороны, выражена суть явлений данного рода — кооперативность действий разрозненных элементов, спонтанно организующихся в структуру некоторой системы.
Синергетика как новое направление междисциплинарных исследований представляет собой интерес для науки в целом.
Во-первых, она представляет собой иной подход к изучению процессов самоорганизаций, развития различного рода систем, чем кибернетика. Кибернетика ограничивалась анализом самоорганизующихся технических систем. Синергетика пытается раскрыть единые принципы самоорганизации в любых природных системах, т.е. как в живых, так и в неживых.
Во-вторых, принципы самоорганизации могут стать основой для создания общей концепции глобального эволюционизма, т.е. развития в масштабе всей Вселенной.
В-третьих, синергетика является более общей теорией самоорганизации, чем теория, основанная на данных кибернетики. Обрисовывая единые механизмы структу-рогенеза, она становится целостной естественнонаучной концепцией становления и развития материальных структур.
В-четвертых, для синергетики характерен особый подход в постановке вопроса об изоморфных законах структурной статики и динамики. У нее есть собственные основания для решения этого вопроса, которых нет ни у кибернетики, ни у теории систем. Это положение о когерентном, самосогласованном, самоинструктированном поведении большого ансамбля инородных объектов, поставленных в определенные условия. Синергетика рассматривает мир объектов, основываясь на не известном ранее моменте активности материи — «резонансном возбуждении» вступающих во взаимодействие объектов.
19. Основные понятия термодинамики. Первое и второе начало термодинамики.
Термодина́мика (греч. θέρμη — «тепло», δύναμις — «сила») — раздел физики, изучающий соотношения и превращения теплоты и других форм энергии. В отдельные дисциплины выделились химическая термодинамика, изучающая физико-химические превращения, связанные с выделением или поглощением тепла, а также теплотехника.
В термодинамике имеют дело не с отдельными молекулами, а с макроскопическими телами, состоящими из огромного числа частиц. Эти тела называются термодинамическими системами. В термодинамике тепловые явления описываются макроскопическими величинами — давление, температура, объём, …, которые не применимы к отдельным молекулам и атомам.
В теоретической физике наряду с феноменологической термодинамикой, изучающей феноменологию тепловых процессов, выделяют термодинамику статистическую, которая была создана для механического обоснования термодинамики и была одним из первых разделов статистической физики.
Первое начало термодинамики утверждает, что если система совершает термодинамический цикл, т.е. в конечном счете возвращается в исходное состояние, то полное количество тепла, сообщенное системе на протяжении цикла, равно совершенной ею работе. Количественная формулировка первого начала термодинамики: количество тепла dQ, сообщенное телу идет на увеличение его внутренней энергии dU и на совершение телом работы dA, т.е. dQ=dU+dA
Первое начало выражает собой по существу выражение Закона сохранения энергии для систем, в которых существенную роль играют тепловые процессы. Многочисленные опыты показывают, что все тепловые процессы необратимы в отличие от механического движения. Если реализуется какой-либо термодинамический процесс, то обратный процесс, при котором проходят те же тепловые состояния, но только в обратном порядке, практически невозможен, т.е. термодинамические процессы необратимы.
Второе начало термодинамики утверждает, что теплота не может самопроизвольно перейти от системы с меньшей температурой к системе с большей температурой. С.Карно в 1824 г. Показал, что любая тепловая машина должна содержать помимо источника теплоты (нагревателя) и рабочего тела, совершающего термодинамический цикл (например, пара), еще и холодильник, имеющий температуру более низкую, чем температура нагревателя. Обобщение вывода Карно на произвольные термодинамические системы и позволило Р.Клаузиусу сформулировать в 1850 г. Указанное Второе начало. В формулировке английского физика В.Томсона (1851) Второе начало утверждает, что невозможно произвести механическую работу за счет охлаждения одного теплового резервуара. Обе приведенные формулировки Второго начала, являясь эквивалентными, подчеркивают существенное различие в возможностях реализации энергии, полученной за счет внешних источников и энергии беспорядочного (теплового) движения частиц тела.
Возможность использования энергии теплового движения частиц тела (теплового резервуара) для получения механической работы означала бы реализацию так называемого вечного двигателя 2-го рода, работа которо