Надежность на этапе проектирования
Надежность на этапе проектирования является новой дисциплиной и относится к процессу разработки надежных изделий. Этот процесс включает в себя несколько инструментов и практических рекомендаций и описывает порядок их применения, которыми должна владеть организация для обеспечения высокой надежности и ремонтопригодности разрабатываемого продукта с целью достижения высоких показателей готовности, снижения затрат и максимального срока службы продукта. Как правило, первым шагом в этом направлении является нормирование показателей надежности. Надежность должна быть «спроектирована» в системе. При проектировании системы назначаются требования к надежности верхнего уровня, затем они разделяются на определенные подсистемы разработчиками, конструкторами и инженерами по надежности, работающими вместе. Проектирование надежности начинается с разработки модели. При этом используют структурные схемы надежности или деревья неисправностей, при помощи которых представляется взаимоотношение между различными частями (компонентами) системы.
Одной из наиболее важных технологий проектирования является введение избыточности или резервирование. Резервирование — это способ обеспечения надежности изделия за счет дополнительных средств и (или) возможностей, избыточных по отношению к минимально необходимым для выполнения требуемых функций (ГОСТ 27.002). Путём введения избыточности совместно с хорошо организованным мониторингом отказов, даже системы с низкой надежностью по одному каналу могут в целом обладать высоким уровнем надежности. Однако введение избыточности на высоком уровне в сложной системе (например, на уровне двигателя самолета) очень сложно и дорого, что ограничивает такое резервирование. На более низком уровне системы резервирование реализуется быстро и просто, например, использование дополнительного соединения болтом.
Существует много методик анализа надежности, специфических для отдельных отраслей промышленности и приложений. Наиболее общие из них следующие.
Анализ видов и последствий отказов (АВПО)
Имитационное моделирование надежности
Анализ схем функциональной целостности (СФЦ)
Анализ опасностей (Hazard analysis)
Анализ структурных схем надежности (RBD)
Анализ деревьев неисправностей
Ускоренные испытания
Модели ускорения жизни
Модели деградации
Анализ роста надежности
Вейбулл-анализ (анализ эмпирических данных испытаний и эксплуатации)
Анализ смеси распределений
Устранение критичных отказов
Анализ ремонтопригодности, ориентированной на безотказность
Анализ диагностики отказов
Анализ ошибок человека-оператора
Инженерные исследования проводятся для определения оптимального баланса между надежностью и другими требованиями и ограничениями. Существенную помощь при инженерном анализе надежности могут оказать программные комплексы для расчета надежности.
Испытания на надежность
Испытания на надёжность проводятся для того, чтобы на более ранних этапах жизненного цикла изделия обнаружить потенциальные проблемы, обеспечить уверенность, что система будет отвечать заданным требованиям.
Испытания на надежность могут проводиться на разных уровнях. Сложные системы могут испытываться на уровне компонент, устройств, подсистем и всей системы в целом. Например, испытания компонент на воздействие внешних факторов может выявить проблемы перед тем, как они будут обнаружены на более высоком уровне интеграции. Проведение испытаний на каждом уровне интеграции до испытания всей системы с одновременным развитием программы испытаний позволяет снизить риск неудачи такой программы. Расчет надежности производится на каждом уровне испытаний. При этом часто используются такие методы, как анализ роста надежности и системы отчета и анализа отказов и корректирующих действий (FRACAS). Недостатками таких испытаний являются время и затраты. Заказчики могут пойти на некоторый риск и отказаться от испытаний на более низких уровнях.
Некоторые системы принципиально не могут подвергаться испытаниям, например, из-за чрезмерно большого числа различных тестов или жестких ограничений по времени и затратам. В таких случаях могут быть использованы ускоренные испытания, методы планирования экспериментов и моделирование.
Отметим, что сегодня все чаще и чаще применяются так называемые ускоренные испытания в динамически меняющейся среде для оценивания качества и надежности высококачественной и высоконадежной продукции, в том числе и структурно-сложных систем с учетом их старения, усталости, износа и деградации в ходе их эксплуатации. Для этого за последние двадцать лет в статистике ускоренных испытаний разработаны специальные модели ускорения жизни (см., например, Nelson (1990), Meeker and Escobar (1998), Singpurvalla (1995)), которые хорошо адаптированы для статистического анализа данных об отказах, наблюдаемых как при меняющихся во времени стрессах (нагрузках, ковариантах), так и при наличии деградационных процессов, которые также могут зависеть от этих стрессов.
Надежность и безопасность
Надежность в инженерной практике отличается от безопасности отношением к видам опасностей, с которыми она имеет дело. Надежность в технике главным образом связана с определением стоимостных показателей. Они относятся к тем опасностям в смысле надежности, которые могут перерасти в аварии с частичной потерей доходов для компании или заказчика. Это может произойти из-за потери по причине неготовности системы, неожиданно высоких затрат на запасные части и ремонт, перерывов в нормальной работе и т. п. Безопасность относится к тем случаям проявления опасности, которые могут привести к потенциально тяжелым авариям. Требования по безопасности функционально связаны с требованиями по надежности, но характеризуются более высокой ответственностью. Безопасность имеет дело с нежелательными опасными событиями для жизни людей и окружающей среды в том же смысле, что и надежность, но не связана напрямую со стоимостными показателями и не относится к действиям по восстановлению после отказов и аварий. У безопасности другой уровень важности отказов в обществе и контроля со стороны государства. Безопасность часто контролируется государством (например, атомная промышленность, космос, оборона, железные дороги и нефтегазовый сектор).
Отказоустойчивость
Надежность может быть увеличена при использовании резервирования «2 из 2» на уровне компонент или системы, но это может привести к снижению безопасности за счет увеличения вероятности ложной тревоги (например, ложное срабатывание тормозной системы поезда). Отказоустойчивые мажоритарные системы (логика голосования «2 из 3») может увеличить как надежность, так и безопасность на системном уровне. Такие методы являются общей практикой в аэрокосмических системах, в которых требуется постоянная готовность и недопустимость опасных отказов.