Системы сбора нефти на промыслах

настоящее время известны следующие системы промыслового сбора: самотечная двухтрубная, высоконапорная однотрубная и напорная.

При самотечной двухтрубной системе сбора(рис. 18) продук­ция скважин сначала разделяется при давлении 0,6 МПа. Выделяющий­ся при этом газ под собственным давлением транспортируется до ком­прессорной станции или сразу на газоперерабатывающий завод (ГПЗ) если он расположен поблизости. Жидкая фаза направляется на вторую ступень сепарации. Выделившийся здесь газ используется на собственные нужды. Нефть с водой самотеком (за счет разности нивелирных высот) поступает в резервуары участкового сборного пункта, откуда подается насосом в резервуары центрального пункта сбора (ЦПС).

Системы сбора нефти на промыслах - student2.ru

Рис. 18.Принципиальная схема самотечной двухтрубной системы сбора: 1 — скважины; 2 — сепаратор 1-й ступени; 3 — регулятор давления типа «до себя»; 4 — газопровод; 5 — сепаратор 2-й ступени; 6 — резервуары; 7 — насос; 8 — нефтепровод; УКПН — установка комплексной подготовки нефти; ЦПС — центральный пункт сбора

За счет самотечного движения жидкости уменьшаются затраты элек­троэнергии на ее транспортировку. Однако данная система сбора имеет ряд существенных недостатков:

1) при увеличении дебита скважин или вязкости жидкости (за счет увеличения обводненности, например) система требует рекон­струкции;

2) для предотвращения образования газовых скоплений в трубо­проводах требуется глубокая дегазация нефти;

3) из-за низких скоростей движения возможно запарафинивание тру­бопроводов, приводящее к снижению их пропускной способности;

из-за негерметичности резервуаров и трудностей с использованием газов 2-й ступени сепарации потери углеводородов при данной системе сбора достигают 2.. .3% от общей добычи нефти.

По этим причинам самотечная двухтрубная система сбора в настоя­щее время существует только на старых промыслах.

Высоконапорная однотрубная система сбора(рис. 19) пред­ложена в Грозненском нефтяном институте. Ее отличительной осо­бенностью является совместный транспорт продукции скважин на расстояние в несколько десятков километров за счет высоких (до б...7 МПа) устьевых давлений.

Системы сбора нефти на промыслах - student2.ru

Рис. 19.Принципиальная схема высоконапорной однотрубной системы сбора: 1 — скважины; 2 — нефтегазопровод; 3 — сепа­ратор 1-й ступени; 4 — сепаратор 2-й ступени; 5 — регулятор давления; 6 — резервуары

Применение высоконапорной однотрубной системы позволяет отка­заться от сооружения участковых сборных пунктов и перенести опера­ции по сепарации нефти на центральные сборные пункты. Благодаря этому достигается максимальная концентрация технологического оборудования, укрупнение и централизация сборных пунктов, сокраща­ется металлоемкость нефтегазосборной сети, исключается необходимость строительства нефтеперкачивающих и компрессорных станций на тер­ритории промысла, обеспечивается возможность утилизации попутного нефтяного газа с самого начала разработки месторождений.

Недостатком системы является то, что из-за высокого содержания газа в смеси (до 90% по объему) в нефтегазосборном трубопроводе имеют место значительные пульсации давления и массового расхода жидкости и газа. Это нарушает устойчивость трубопроводов, вызывает их разрушение из-за большого числа циклов нагружения и разгрузки металла труб, отрицательно влияет на работу сепараторов и контроль­но-измерительной аппаратуры.

Высоконапорная однотрубная система сбора может быть применена только на месторождениях с высокими пластовыми давлениями.

Напорная система сбора(рис. 20), разработанная институтом Гипровостокнефть, предусматривает однотрубный транспорт нефти и газа на участковые сепарационные установки, расположенные на расстоя­нии до 7 км от скважин, и транспорт газонасыщенной нефти в однофазном состоянии до ЦПС на расстояние 100 км и более.

Системы сбора нефти на промыслах - student2.ru

Рис.20. Принципиальная схема напорной системы сбора: 1 — скважины; 2 — сепаратор 1-й ступени; 3 — регулятор давления типа «до себя»; 4 — газопровод; 5 — насосы; 6 — нефтепровод; 7 — сепаратор 2-й ступени; 8 — резервуар; ДНС — дожимная нефтеперекачивающая станция

Продукция скважин подается сначала на площадку дожимной неф­теперекачивающей станции (ДНС), где при давлении 0,6...0,8 МПа в сепараторах 1-й ступени происходит отделение части газа, транс­портируемого затем на ГПЗ бескомпрессорным способом. Затем нефть с оставшимся растворенным газом центробежными насосами перекачивается на площадку центрального пункта сбора, где в сепа­раторах 2-й ступени происходит окончательное отделение газа. Вы­делившийся здесь газ после подготовки компрессорами подается на ГПЗ, а дегазированная нефть самотеком (высота установки сепарато­ров 2-й ступени 10... 12 м) в сырьевые резервуары. Применение напорной системы сбора позволяет:

• сконцентрировать на ЦПС оборудование по подготовке нефти, газа

и воды для группы промыслов, расположенных в радиусе 100 км;

• применять для этих целей более высокопроизводительное обору­дование, уменьшив металлозатраты, капитальные вложения и экс­плуатационные расходы;

• снизить капиталовложения и металлоемкость системы сбора, благодаря отказу от строительства на территории промысла компрессорных станций и газопроводов для транспортировки нефтяного газа низкого давления;

• увеличить пропускную способность нефтепроводов и уменьшить затраты мощности на перекачку вследствие уменьшения вязко­сти нефти, содержащей растворенный газ.

Недостатком напорной системы сбора являются большие эксплуа­тационные расходы на совместное транспортирование нефти и воды с месторождений до ЦПС и соответственно большой расход энергии и труб на сооружение системы обратного транспортирования очищен­ной пластовой воды до месторождений для использования ее в систе­ме поддержания пластового давления.

В настоящее время в развитых нефтедобывающих регионах при­меняют системы сбора, лишенные указанных недостатков (рис. 21).

Системы сбора нефти на промыслах - student2.ru

Системы сбора нефти на промыслах - student2.ru

Рис. 21.Принципиальные схемы современных систем сбора нефти: а — с подготовкой нефти в газонасыщенном состоянии на ЦПС; б — с подготовкой нефти в газонасыщенном состоянии на КПС; 1 — скважины; 2 — сепаратор 1-й ступени; 3 — регулятор давления типа «до себя»; 4 — газопровод; 5 — насосы; 6 — нефте­провод; 7 — сепаратор 2-й ступени; 8 — резервуар; ДНС — дожимная нефтеперекачивающая станция

Система, изображенная на рис. 2.3.16а, отличается от традиционной Горной тем, что еще перед сепаратором первой ступени в поток вводят

реагент деэмульгатор, разрушающий водонефтяную эмульсию. Это позволяет отделить основное количество воды от продукции скважин на ДНС. На центральном же сборном пункте установка комплекс­ной подготовки нефти расположена перед сепаратором второй ступени. Это связано с тем, что нефть, содержащая растворенный газ, имеет меньшую вязкость, что обеспечивает более полное отделение воды от нее.

Особенностью схемы, изображенной на рис. 2.3.166, является то, что установка комплексной подготовки нефти перенесена ближе к скважинам. ДНС, на которой размещается УКПН, называется ком­плексным сборным пунктом (КСП).

Последняя схема применяется при большом числе скважин, под­ключенных к КСП.

4. Промысловая подготовка нефти

Из нефтяных скважин в общем случае извлекается сложная смесь, состоящая из нефти, попутного нефтяного газа, воды и механических примесей (песка, окалины и пр.). В таком виде транспортировать про­дукцию нефтяных скважин по магистральным нефтепроводам нельзя. Во-первых, вода — это балласт, перекачка которого не приноси прибыли. Во-вторых, при совместном течении нефти, газа и воды имеют место значительно большие потери давления на преодоление си, трения, чем при перекачке одной нефти. Кроме того, велико сопротивление, создаваемое газовыми шапками, защемленными в вершинах профиля и скоплений воды в пониженных точках трассы. В-третьих минерализованная пластовая вода вызывает ускоренную коррозии трубопроводов и резервуаров, а частицы механических примесей абразивный износ оборудования.

Целью промысловой подготовки нефти является ее дегазация, обезвоживание, обессоливание и стабилизация.

Дегазация нефтиосуществляется с целью отделения газа от нефти. Аппарат, в котором это происходит, называется сепаратором,а сам процесс разделения — сепарацией.

Процесс сепарации осуществляется в несколько этапов (ступеней) Чем больше ступеней сепарации, тем больше выход дегазированно нефти из одного и того же количества пластовой жидкости. Однако при этом увеличиваются капиталовложения в сепараторы. В связи с вышесказанным число ступеней сепарации ограничивают двум тремя.

Сепараторы бывают вертикальные, горизонтальные и гидроциклонные.

Вертикальный сепаратор представляет собой вертикально установ­ленный цилиндрический корпус с полусферическими днищами, снаб­женный патрубками для ввода газожидкостной смеси и вывода жид­кой и газовой фаз, предохранительной и регулирующей арматурой, а также специальными устройствами, обеспечивающими разделение жидкости и газа.

Вертикальный сепаратор работает следующим образом (рис. 22).

Газонефтяная смесь под давлением поступает в сепаратор по пат­рубку (1) в раздаточный коллектор со щелевым выходом (2). Регулято­ром давления (3) в сепараторе поддерживается определенное давле­ние, которое меньше начального давления газожидкостной смеси. За счет уменьшения давления из смеси в сепараторе выделяется раство­ренный газ. Поскольку этот процесс не является мгновенным, время пребывания смеси в сепараторе стремятся увеличить за счет установ­ки наклонных полок (6), по которым она стекает в нижнюю часть аппарата. Выделяющийся газ поднимается вверх. Здесь он проходит через жалюзийный каплеуловитель (4), служащий для отделения ка­пель нефти, и далее направляется в газопровод. Уловленная нефть по дренажной трубе (12) стекает вниз.

Контроль за уровнем нефти в нижней части сепаратора осуществля­ется с помощью регулятора уровня (8) и уровнемерного стекла (11). Шлам (песок, окалина и т. п.) из аппарата удаляется по трубопроводу (9).

Достоинствами вертикальных сепараторов являются относитель­ная простота регулирования уровня жидкости, а также очистки от от­ложений парафина и механических примесей. Они занимают отно­сительно небольшую площадь, что особенно важно в условиях мор­ских промыслов, где промысловое оборудование монтируется на платформах или эстакадах. Однако вертикальные сепараторы имеют и существенные недостатки: меньшую производительность по срав­нению с горизонтальными при одном и том же диаметре аппарата; меньшую эффективность сепарации.

Горизонтальный газонефтяной сепаратор конструкции ЦКБН (рис. 23) состоит из технологической емкости (1), внутри которой Расположены две наклонные полки (2), пеногаситель (3), влагоотделитель (5) и устройство для предотвращения образования воронки при Дренаже нефти (7). Технологическая емкость снабжена патрубком (10) Аля ввода газонефтяной смеси, штуцерами выхода газа (4) и нефти (6) люк-лазом (8). Наклонные полки выполнены в виде желобов с отбортовкой не менее 150 мм. В месте ввода газонефтяной смеси в сепа­ратор смонтировано распределительное устройство (9).

Системы сбора нефти на промыслах - student2.ru

Рис. 22.Вертикальный сепаратор: 1 — патрубок вводе газожидкостной смеси; 2 — раздаточный коллектор со щелевым выходом; 3 — регулятор давления «до себя» на линии отвода газа; 4 — жалюзийный каплеуловитель; 5 — предохранительный клапан; 6 — наклонные полки; 7 — поплавок; 8 — регулятор уровня на линии отвода нефти; 9 — линия сброса шлама; 10 — перегородки; 11 — уровнемерное стекло; 12 — дренажная труба

Сепаратор работает следующим образом. Газонефтяная смесь че­рез патрубок (10) и распределительное устройство (9) поступает на полки (2) и по ним стекает в нижнюю часть технологической емко­сти. Стекая по наклонным полкам, нефть освобождается от пузырь­ков газа. Выделившийся из нефти газ проходит пеногаситель (3), где разрушается пена, и влагоотделитель (5), где очищается от капель неф­ти, и через штуцер выхода газа (4) отводится из аппарата. Дегазирован­ная нефть накапливается в нижней части технологической емкости и отводится из аппарата через штуцер (6).

Системы сбора нефти на промыслах - student2.ru

Рис. 23.Горизонтальный газонефтяной сепаратор конструкции ЦКБН: 1 — технологическая емкость; 2 — наклонные желоба; 3 — пеногаситель; 4 — выход газа; 5 — влагоотделитель; 6 — выход нефти; 7 — устройство для предотвращения образования воронки; 8 — люк-лаз; 9 — распределительное устройство; 10 — ввод продукции

Для повышения эффективности процесса сепарации в горизонталь­ных сепараторах используют гидроциклонные устройства. Го­ризонтальный газонефтяной сепаратор гидроциклонного типа (рис. 24) состоит из технологической емкости (1) и нескольких одно-точных гидроциклонов (2). Конструктивно одноточный циклон пред­ставляет собой вертикальный цилиндрический аппарат с тангенциальным вводом газонефтяной смеси, внутри которого расположены направ­ляющий патрубок (3) и секция перетока (4). В одноточном гидроци­клоне смесь совершает одновременно вращательное движение вокруг направляющего патрубка и нисходящее движение, образуя нисходя­щий вихрь. Нефть под действием центробежной силы прижимается к стенке циклона, а выделившийся и очищенный от капель жидкости газ движется в его центре. В секции перетока нефть и газ меняют на­правление движения с вертикального на горизонтальное и поступают раздельно в технологическую емкость. Далее газовый поток прохо­дит каплеотбойник (5), распределительные решетки (6) и выходит из сепаратора. Нефть по наклонным полкам (7) стекает в нижнюю часть емкости. Ее уровень поддерживается с помощью регулятора (8).

Системы сбора нефти на промыслах - student2.ru

Рис. 24.Горизонтальный газонефтяной сепаратор гидро­циклонного типа: 1 — емкость; 2 — одноточный гидроциклон; 3 — направляющий патрубок; 4 — секция перетока; 5 — каплеотбой-ник; 6 — распределительные решетки; 7 — наклонные полки; 8 — регулятор уровня

Обезвоживаниемназывается процесс отделения воды от нефти. При извлечении из пласта, движении по насосно-компрессорным трубам в стволе скважины, а также по промысловым трубопроводам смеси нефти и воды образуется водонефтяная эмульсия — механическая смесь нерастворимых друг в друге и находящихся в мелкодисперсном состояния жидкостей.

В эмульсиях принято различать дисперсионную (внешнюю, сплош­ную) среду и дисперсную (внутреннюю, разобщенную) фазу. По ха­рактеру дисперсионной среды и дисперсной фазы различают два типа эмульсий: «нефть в воде» и «вода в нефти». Тип образующейся эмуль­сии, в основном, зависит от соотношения объемов фаз, а также от температуры поверхностного натяжения на границе «нефть-вода» и др.

Одной из важнейших характеристик эмульсий является диаметр ка­пель дисперсной фазы, так как от него зависит скорость их осаждения.

Для разрушения эмульсий применяются следующие методы:

• гравитационное холодное разделение;

• внутритрубная деэмульсация;

• термическое воздействие;

• термохимическое воздействие;

• электрическое воздействие;

• фильтрация;

• разделение в поле центробежных сил.

Гравитационное холодное разделение применяется при высоком содержании воды в пластовой жидкости. Отстаивание производится в отстойниках периодического и непрерывного действия.

В качестве отстойников периодического действия обычно исполь­зуются сырьевые резервуары, аналогичные резервуарам для хране­ния нефти. После заполнения таких резервуаров сырой нефтью вода осаждается в их нижнюю часть.

В отстойниках непрерывного действия отделение воды осуществ­ляется при непрерывном прохождении обрабатываемой смеси через отстойник. Длина отстойника определяется из условия, что от нефти должны отделиться капли заданного размера.

Сущность метода внутритрубной деэмульсации заключается в том, что в смесь нефти и воды добавляется специальное вещество — деэмульгатор в количестве 15...20 г на тонну эмульсии. Деэмульгатор разрушает бронирующую оболочку на поверхности капель воды и обеспечивает тем самым условия для их слияния при столкновениях. В последующем эти укрупнившиеся капельки относительно легко от­деляются в отстойниках за счет разности плотностей фаз.

Термическое воздействие заключается в том, что нефть, подвергае­мую обезвоживанию, перед отстаиванием нагревают. При нагрева­нии, с одной стороны, уменьшается прочность бронирующих оболо­чек на поверхности капель, а значит, облегчается их слияние, с дру­гой стороны, уменьшается вязкость нефти, в которой оседают капли, а это увеличивает скорость разделения эмульсии.

Нагревают эмульсию в резервуарах, теплообменниках и трубчатых печах до температуры 45... 800С.

Термохимический метод заключается в сочетании термического воз­действия и внутритрубной деэмульсации.

Электрическое воздействие на эмульсии производится в аппаратах, которые называются электродегидраторами. Под действием электриче­ского поля на противоположных концах капель воды появляются разно­именные электрические заряды. В результате капельки притягиваются друг к другу и сливаются. Затем они оседают на дно емкости.

Фильтрация применяется для разрушения нестойких эмульсий. В качестве материала фильтров используются вещества, не смачивае­мые водой, но смачиваемые нефтью. Поэтому нефть проникает через фильтр, а вода нет.

Разделение эмульсий в поле центробежных сил производится в цент­рифугах, которые представляют собой вращающийся с большим чис­лом оборотов ротор. Эмульсия подается в ротор по полому валу. Здесь она под действием сил инерции разделяется, так как капли воды и нефти имеют различные плотности.

При обезвоживании содержание воды в нефти доводится до 1 ...2%.

Обессоливание нефтиосуществляется смешением обезвоженной нефти с пресной водой, после чего полученную искусственную эмуль­сию вновь обезвоживают. Такая последовательность технологических операций объясняется тем, что даже в обезвоженной нефти остается некоторое количество воды, в которой и растворены соли. При смешении с пресной водой соли распределяются по всему ее объему и, следовательно, их средняя концентрация в воде уменьшается.

При обессоливании содержание солей в нефти доводится до вели­чины менее 0,1%.

Под процессом стабилизации нефтипонимается отделение от нее легких (пропан-бутанов и частично бензиновых) фракций с целью уменьшения потерь нефти при ее дальнейшей транспортировке.

Стабилизация нефти осуществляется методом горячей сепарации или методом ректификации. При горячей сепарации нефть сначала нагрева­ют до температуры 40...80 °С, а затем подают в сепаратор. Выделяющие­ся при этом легкие углеводороды отсасываются компрессором и направ­ляются в холодильную установку. Здесь тяжелые углеводороды конден-сируются, а легкие собираются и закачиваются в газопровод.

При ректификации нефть подвергается нагреву в специальной ста­билизационной колонне под давлением и при повышенных темпера­турах (до 240 °С). Отделенные в стабилизационной колонне легкиеi фракции конденсируют и перекачивают на газофракционирующие I установки или на ГПЗ для дальнейшей переработки.

К степени стабилизации товарной нефти предъявляются жесткие требования: давление упругости ее паров при 38 °С не должно превы­шать 0,066 МПа (500 мм рт. ст.).

5. Установка комплексной подготовки нефти

Процессы обезвоживания, обессоливания и стабилизации нефти осуществляются на установках комплексной подготовки нефти (УКПН).

Принципиальная схема УКПН с ректификацией приведена на рис. 2.3.20.

Системы сбора нефти на промыслах - student2.ru

Рис. 2.3.20.Принципиальная схема установки комплексной подготовки нефти: 1, 9,11,12 — насосы; 2,5 — теплообменники; 3 — отстойник; 4 — электродегидратор; 6 — стабилизационная колонна; 7 — конденсатор-холодильник; 8 — емкость орошения; 10 — печь; I — холодная «сырая» нефть; II — подогретая «сырая» нефть; III — дренажная вода; IV — частично обезвоженная нефть; V — пресная вода; VI — обезвоженная и обессоленная нефть; VII — пары легких углеводородов; VIII — несконденсировавшиеся пары; IX — широкая фракция (сконденсировавшиеся пары); X — стабильная нефть

Работает УКПН следующим образом. Холодная «сырая» нефть из резервуаров ЦПС насосом (1) через теплообменник (2) подается в от­стойник непрерывного действия (3). Здесь большая часть минерали­зованной воды оседает на дно аппарата и отводится для дальнейшей подготовки с целью закачки в пласт (III). Далее в поток вводится прес­ная вода (V), чтобы уменьшить концентрацию солей в оставшейся минерализованной воде. В электродегидраторе (4) производится окон­чательное отделение воды от нефти и обезвоженная нефть через теп­лообменник (5) поступает в стабилизационную колонну (6). За счет прокачки нефти из низа колонны через печь (10) насосом (11) ее тем­пература доводится до 240 0С. При этом легкие фракции нефти испа­ряются, поднимаются в верхнюю часть колонны и далее поступают в конденсатор-холодильник (7). Здесь пропан-бутановые и пентановые фракции в основном конденсируются, образуя так называемую широкую фракцию, а несконденсировавшиеся компоненты отводятся для использования в качестве топлива. Широкая фракция откачи­вается насосом (9) на фракционирование, а частично используется для орошения в колонне (6). Стабильная нефть из низа колонны насо­сом (12) откачивается в товарные резервуары. На этом пути горячая стабильная нефть отдает часть своего тепла сырой нефти в теплооб­менниках (2, 5).

Таким образом, можно увидеть, что в УКПН производятся обезво­живание, обессоливание и стабилизация нефти. Причем для обезво­живания используются одновременно подогрев, отстаивание и элект­рическое воздействие, т. е. сочетание сразу нескольких методов.

Наши рекомендации