Производственные и технологические процессы в машиностроении
Оглавление
1. ПРОИЗВОДСТВЕННЫЕ И ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ.................................................................................... 3
1.1. Предметная область технологии машиностроения....................... 3
1.2. Структура производственного и технологического процессов.. 5
1.3. Типы машиностроительных производств....................................... 9
1.4. Технологическая подготовка производства............................... 13
2. Точность в машиностроении............................................. 18
2.1. Понятие точности............................................................................ 18
2.2. Статистические методы исследования точности........................ 19
2.3. Способы обеспечения заданной точности................................... 25
2.4. Базы и основные принципы теории базирования......................... 27
2.5 Погрешности технологической системы при механической обработке 38
2.5.1. Погрешности, возникающие от неточности элементов технологической системы: станок – приспособление – инструмент – деталь.................... 39
2.5.2. Температурные деформации в технологической системе....... 40
2.5.3. Погрешности, возникающие в результате деформации от сил резания. Жесткость и податливость технологической системы........................... 41
2.6. Суммарная погрешность................................................................. 43
3. Качество поверхностей деталей машин.................... 44
3.1.Общие понятия и определения......................................................... 44
3.2. Влияние качества поверхности на эксплуатационные свойства деталей машин............................................................................................................. 44
3.3. Факторы, влияющие на качество поверхностей.......................... 46
4. Технологичность конструкций машин...................... 50
4.1. Технологичность конструкции изделия........................................ 50
4.2. Классификация и состав показателей технологичности.......... 50
4.3. Определение основных и дополнительных показателей технологичности 51
4.4. Примеры обеспечения технологичности конструкций................ 53
5. Методы механической обработки поверхностей деталей 56
5.1. Обработка наружных цилиндрических поверхностей................. 56
5.2. Обработка отверстий........................................................................ 62
5.3. Обработка плоских поверхностей.................................................. 71
5.4. Методы отделки поверхностей....................................................... 75
6. Средства технологического оснащения................... 81
6.1. Классификация металлорежущих станков.................................. 81
6.2. Оборудование для механической обработки................................ 82
6.2.1. Станки токарной группы.............................................................. 82
6.2.2. Станки сверлильной группы........................................................ 89
6.2.3. Фрезерные станки.......................................................................... 91
6.2.4. Шлифовальные станки................................................................. 92
6.3. Станочные приспособления............................................................ 95
6.4. Основы устройства специальных станочных приспособлений 97
6.5. Основы конструирования приспособлений................................ 107
7. ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ..... 109
7.1. Основные принципы и задачи проектирования.......................... 109
7.2. Общая методика и последовательность проектирования........ 111
7.3. Исходные данные для проектирования технологических процессов механической обработки........................................................................... 113
7.4. Определение типа производства.................................................. 114
7.5. Выбор метода получения заготовки............................................ 114
7.6. Выбор технологических баз.......................................................... 115
7.7. Установление маршрута обработки отдельных поверхностей заготовки....................................................................................................................... 117
7.8. Составление маршрута обработки заготовки............................ 118
7.9. Расчет припусков, технологических размеров и заготовок..... 120
7.10. Построение операций механической обработки...................... 127
7.11. Определение режимов резания на операцию............................. 128
7.12. Технико-экономический анализ вариантов технологического процесса....................................................................................................................... 129
Список литературы...................................................................... 133
Глава 1
ПРОИЗВОДСТВЕННЫЕ И ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ
Глава 2
Точность в машиностроении
Понятие точности
Одним из главных параметров, обеспечивающих высокое качество и длительный срок службы машин, является точность их изготовления. Машины или механизмы, изготовленные из более точных деталей, обеспечивают более высокие эксплуатационные показатели, т. е. они могут быть более быстроходными, более долговечными и надежными в работе. Повышение точности изготовления отдельных деталей машины позволяет повысить не только рабочие скорости этих деталей, но и удельные нагрузки, воспринимаемые ими.
Под точностью изготовления (обработки) следует понимать степень соответствия детали данным чертежа. Точность реальной детали можно оценить по ее геометрическим параметрам: точность формы, точность размеров, точность взаимного расположения поверхностей. Точность изготовления детали зависит от комплекса технологических процессов, применяемых в данном производстве. Повышение точности изготовления заготовок позволяет снизить припуски на обработку, что определяет структуру процесса механической обработки и снижает его стоимость. Повышение точности изготовления деталей при механической обработке снижает трудоемкость сборочных работ.
Каждая деталь машины представляет собой сочетание поверхностей. Это – цилиндрические, конические, плоские и фасонные поверхности. Точность механической обработки заготовок связана с действием замкнутой технологической системы, проявляющейся в точности размера, точности формы и точности расположения поверхностей.
Точность размера различных поверхностей деталей должна соответствовать допуску. Так, возникающие отклонения диаметров шеек валов, глубин отверстий и их диаметров и т.п. могут колебаться в соответствии со значениями допусков. Точность размера в значительной степени определяет качество продукции.
Достижение требуемой точности связано с затратами средств. Чем меньше допуск, тем больше необходимо затратить средств на оборудование, инструмент, заработную плату и т.д. При этом не наблюдается линейная зависимость затрат и достигаемой точности (рис 2.1). Себестоимость изготовления значительно возрастает при обработке, соответствующей 5-6 квалитетам точности.
Рис. 2.1 Зависимость затрат от точности обработки
В ходе изготовления детали действительный размер в каждый момент времени оказывается различным. Это связано с функционированием технологической системы, которая имеет погрешности собственного изготовления, работает в условиях постоянного изнашивания инструмента и, следовательно, постоянно изменяющихся силовых факторов, воспринимает действие тепловых факторов. На точность размеров влияют также погрешности настройки инструмента, установки обрабатываемой заготовки и ряд других факторов.
Точность формы и взаимного положения поверхностей обеспечить гораздо труднее, чем точность размеров. В частности, в производственных условиях возникают отклонения от круглости. Они непосредственно сказываются на качестве соединений, имеющих цилиндрические поверхности, например, подшипники качения. Подшипники вследствие отклонения формы колец могут быстрее утратить свои первоначальные характеристики. Возникающее отклонение от цилиндричности у вала пары « вал-корпус » при поступательном движении не позволяет перемещаться по прямолинейной траектории. Следовательно, такая пара из-за отклонения формы не обеспечивает необходимого качества соединения.
Суммарная погрешность
Суммарная погрешность представляет собой поле рассеяния выполняемого размера в результате воздействия на технологический процесс различных факторов. Суммирование погрешностей обработки осуществляется в зависимости от вида погрешностей. Систематические погрешности суммируются алгебраически, с учетом их знака. Например, можно сопоставить износ резца и его температурные деформации вследствие нагревания в процессе снятия стружки. Эти погрешности могут взаимно перекрывать друг друга.
Систематические погрешности со случайными погрешностями суммируются арифметически. При расчете суммарной погрешности составляющие погрешности суммируются с учетом менее выгодных вариантов, т. е. когда они имеют один знак. Независимые случайные погрешности, подчиняющиеся закону нормального распределения, суммируются по правилу квадратного корня
где — суммарная погрешность; 1, 2, 3, ..., т—составляющие погрешности.
Если составляющие погрешности подчиняются симметричному закону распределения, то суммарная погрешность
где k1, k2, k3, ..., km— коэффициенты, зависящие от вида кривых распределения составляющих погрешностей.
Если все составляющие погрешности подчиняются одному закону распределения, то k1 = k2 = k3, = ... = k, следовательно,
При нормальном распределении k = 1. Отступление от закона нормального распределения вызывает изменение k в пределах 1,0—1,73. При анализе точности обработки на настроенных станках k = 1,2.
Глава 3.
Примеры обеспечения технологичности конструкций
Общие технологические требования к конструкции деталей машин можно сформулировать следующим образом: конфигурация детали должна представлять собой сочетание простых геометрических форм, обеспечивающих удобную, надежную базу для установки заготовки в процессе ее обработки и дающих возможность применения высокопроизводительных технологических методов изготовления. Заданная точность и шероховатость поверхностей детали должны быть строго обоснованны ее служебным назначением. Необоснованные требования к точности и шероховатости приводят к увеличению трудоемкости изготовления и повышению себестоимости детали.
Рассмотрим некоторые решения по обеспечению технологичности при механической обработке и ремонте.
Для увеличения производительности обработки внутренние торцовые поверхности должны быть доступны для обработки зенковкой, т.е. верхнее отверстие должно быть большего диаметра, чем нижнее (рис. 4.1 а). Конструкция втулки должна обеспечивать обработку отверстий с одной стороны. Это повышает точность и производительность за счет обработки за одну установку и упрощению нарезания резьбы в сквозном отверстии (рис.4.1б). Уменьшение размера базового торца уменьшает трудоемкость его обработки. (рис. 4.1 в).
Технологические требования к конструкции продиктованы как технологией производства деталей, так и технологией ремонта машин.
Установка подшипников в узле рис 4.2.а не обеспечивает их выпрессовку при ремонте, технологичной является конструкция на рис. 4.2б.
Конструкция гребенки, выполненная за одно целое с кронштейном направляющего колеса, является нетехнологичной (рис. 4.3а), т.к. выварка всего кронштейна представляет трудности даже при капитальном ремонте танка. Изготовление гребенки отдельно с последующей её приваркой к кронштейну значительно уменьшает трудоемкость работ по её замене и обеспечивает возможность её замены при войсковом (текущем) ремонте(рис 4.3б).
а
б
в
Рис 4.1. Примеры рационального (справа) и нерационального (слева) конструктивного оформления обрабатываемых поверхностей
а б
Рис. 4.2. Пример нетехнологичной (а) и технологичной (б)
конструкции подшипникового узла
а б
Рис. 4.3. Пример нетехнологичной (а) и технологичной (б)
конструкции гребенки
Глава 5
Обработка отверстий
Сверление. Сверлением получают отверстия в сплошном материале. Короткие (неглубокие) отверстия сверлят обыкновенными спиральными сверлами, получая точность 12-13 квалитета, а при малых диаметрах даже более высокую.
Различают два метода сверления: вращением сверла - станки сверлильной группы и вращением детали - станки токарной группы.
Второй метод используют при глубоком сверлении, кольцевом сверлении крупных отверстий, требующем от станка большей мощности и жесткости, чем может обеспечить сверлильный станок. В остальных случаях этот метод является простым следствием включения сверления в состав токарной операции (револьверные станки, токарные автоматы и др.). Для уменьшения бокового отжима сверла в момент врезания предусматривают в предшествующем переходе засверливание отверстия коротким жестким сверлом с меньшим углом при вершине.
На сверлильных станках операции сверления выполняют с помощью кондукторов. Кондуктор позволяет обрабатывать в одной операции много отверстий одного диаметра. Для получения отверстий разных диаметров в одной операции применяются для закрепления инструмента быстросменные патроны (рис. 5.8). Для повышения производительности применяют многошпиндельные головки или специальные (агрегатные) станки.
рис. 5.8. Быстросменный патрон
Для точных отверстий сверление является первой операцией (или переходом), подготавливающей отверстие к последующей более точной обработке. Применение кондуктора с быстросменными втулками и быстросменных патронов для закрепления инструментов в шпинделе станка позволяет выполнять в одной операции сверление, зенкерование и развертывание.
Зенкерование. Зенкеры применяют для обработки отверстий диаметром до 120 мм. Цельные зенкеры имеют 3—4 режущих зуба и спиральные канавки, меньшей глубины, чем у сверл. Благодаря этому они обладают большей жесткостью, чем сверла, и менее склонны к уводу. Крупные зенкеры делают насадными, со вставными зубьями.
Зенкерование – универсальный процесс, как и обработка резцом. Наибольшая величина припуска ограничивается лишь прочностью зенкера. Геометрия зуба зенкера близка к геометрии резца, но поскольку у зенкера несколько зубьев, подача его на один оборот может быть большей, а вместе с этим — больше и производительность обработки.
Черновое (обдирочное) зенкерование применяют для обработки отверстий, полученных в отливках или поковках. Для предотвращения вибраций и увода зенкер направляют направляющей втулкой. Это необходимо не из-за малой жесткости самого зенкера, а вследствие недостаточной жесткости станка, особенно если станок сверлильный. Точность отверстия после обдирки зенкером примерно соответствует 12-13 квалитету.
Особенно часто зенкерование применяют после сверления для повышения точности отверстия и точности положения его оси, которое обеспечивается лучшей по сравнению со сверлом геометрией зенкера и его большей жесткостью. При этом достигается 11-12 квалитет точности отверстия по диаметру, а в благоприятных условиях (малый диаметр, небольшой и равномерный припуск) и более высокая, с шероховатостью до Ra 2.5 мкм.
|
|
а б в
Рис. 5.9. Раззенковывание отверстия (а), зенкование фаски (б) и подрезание торца (в)
Зенкерованием снимают фаски у отверстий, делают углубления, а также площадки (торцовка), необходимые для крепежных деталей т. п. Для того чтобы указать на такую особенность процесса, его часто называют зенкованием, а применяемые зенкеры — зенковками (рис. 5.9). Подрезание торцев в труднодоступных местах производят съемными зенковками(рис. 5.10), укрепляемыми на державке так называемым штыковым затвором.
рис. 5.10. Съемные зенковки
В операциях, выполняемых на револьверных станках, находят применение, кроме сверл, зенкеров и зенковок, комбинированные инструменты, позволяющие совмещать переходы.
Развертывание. Развертыванием обрабатывают отверстия в том же диапазоне диаметров, что и зенкерованием. Небольшие развертки делают цельными, а крупные — насадными.
Развертки рассчитаны на снятие малого припуска. Они отличаются от зенкеров большим числом зубьев и прямым направлением зубьев, меньшими углами в плане. Снятие разверткой большого припуска дает результаты по точности и производительности даже худшие, чем зенкерование.
Для того чтобы оставить на развертывание малый припуск, предшествующая обработка должна быть соответственно точной — обычно ею служит зенкерование или растачивание резцом. В результате может быть достигнута точность отверстия, соответствующая 9-10 квалитету.
Для достижения более высокой точности необходим более точный метод предшествующей обработки. Таким методом может служить само развертывание после зенкерования или растачивания резцом. По отношению к последующему более точному (чистовому) развертыванию оно будет черновым. Чистовым развертыванием возможно получать отверстия с точностью до 7 квалитета при шероховатости до Ra 0,63.
Как процесс более тонкий, чем зенкерование, развертывание более чувствительно не только к колебаниям величины припуска, но и к другим факторам, влияющим на точность обработки. В частности, помимо высокой точности и тщательной заточки самой развертки, обязательным условием для получения высокой точности отверстия является строгое совпадение оси развертки с осью отверстия, подлежащего развертыванию.
Несовпадение осей приводит к разбиванию отверстия, поэтому развертку связывают со станком не жестко, а с помощью державки (качающейся или плавающей—рис. 5.11), позволяющей развертке самоустанавливаться по отверстию.
Рис. 5.11. Плавающая державка
Таким образом, развертывание принадлежит к процессам, позволяющим улучшать только точность диаметра и чистоту обработки, положение оси отверстия остается практически прежним.
В некоторых случаях бывает целесообразно, а иногда и необходимо, давать развертке принудительное направление с помощью втулок. Это нужно при малой длине отверстия, при малой длине приемного конуса (развертывание глухого отверстия почти на всю его длину) с целью предотвратить перекос развертки (рис.5.12).
|
|
|
|
|
|
Рис. 5.12. Направление разверток: а – заднее, б – переднее, в - двойное
Для развертывания крупных отверстий применяют также плавающие развертки — двузубые плоские ножи, точно пригнанные к пазу державки. Наиболее часто ими пользуются в операциях, выполняемых на расточных станках.
Характерным дефектом развертывания являются риски на обработанной поверхности, возникающие вследствие случайного налипания материала на зуб развертки, а также пятна — следы предшествующей обработки, особенно вероятные при малом припуске. Поэтому развертывание отверстий, в которых подобные дефекты не допускаются, заменяют при возможности другими процессами — хонингованием (для стальных деталей) или тонким растачиванием (детали из цветных сплавов).
Растачивание. Существует два основных способа растачивания: растачивание, при котором вращается деталь (станки токарной группы), и растачивание, при котором вращается инструмент (расточные станки).
Растачивание резцом на токарном станке общего назначения является во всех отношениях наиболее универсальным методом обработки отверстий. На токарных станках можно обрабатывать отверстия самых различных размеров с различной точностью, в самых разнообразных по форме и размерах деталях.
Обрабатываемые детали устанавливают на станке при помощи патронов общего назначения и специальных приспособлений. При растачивании выемок, выточек и т. п. в центральном отверстии длинных деталей (пустотелые валы) конец детали можно поддерживать люнетом.
В отношении величины допустимого припуска на обработку, экономически целесообразной (и достижимой) точности обработки и т. д., растачивание — подобно обтачиванию.
Расточные станки применяют для обработки отверстий в крупных деталях, таких, которые трудно или невозможно разместить и вращать на станке токарного типа.
Инструментами служат резцы, закрепленные в державках (длинные державки с передним направлением называют борштангами), расточные пластины и блоки. Применение резцов обусловлено их простотой и надежностью при грубом растачивании литого или прошитого отверстия, при неравномерном распределении припуска по диаметру отверстия. Закрепление резца в державке может быть радиальным или осевым (рис. 5.13).
|
|
Рис. 5.13. Закрепление резца в державке: а – радиальное, б – осевое
Расточная пластина является мерным, специальным инструментом. В противоположность этому расточной блок (рис. 5.14) представляет собой корпус со вставными резцами, положение которых можно регулировать, т. е. устанавливать резцы на требуемый диаметр поверхности. Блок закрепляют в борштанге при помощи конического штифта или клина, допускающего быстрое снятие блока. Для чистового растачивания применяют также плавающие блоки.
Рис. 5.14. Расточные блоки: а - черновой; б—чистовой
Чистовым растачиванием получают точность до 6 квалитета. Точность расположения отверстия зависит от точности установки детали в приспособлении и от точности установки шпинделя станка относительно детали.
Шлифование отверстий. Отверстия шлифуют реже, чем наружные цилиндрические поверхности, так как для получения точного отверстия используют другие методы (развертывание, хонингование и др.).
Но для деталей с высокой твердостью, не допускающей обработку лезвийным инструментом, шлифование является единственным методом, позволяющим повышать не только точность самого отверстия, но и точность координат его оси. Кроме того, шлифование бывает необходимым для обработки глухих коротких отверстий, отверстий большого диаметра, отверстий с тонкими стенками, с канавками и во многих других случаях. Вероятность брака при шлифовании всегда меньше, чем при развертывании. В производствах небольшого масштаба использование шлифования позволяет не изготовлять нестандартные развертки.
В производствах большого масштаба чистовое шлифование сквозных отверстий часто заменяют хонингованием, выдерживая необходимые координаты оси на операции шлифования.
Сквозные отверстия шлифуют методом продольной подачи, а короткие — методом врезания (рис. 5.15).
Рис. 5.15. Схемы шлифования на внутришлифовальном станке
В массовом производстве деталей типа колец широко применяют бесцентровое внутреннее шлифование (рис. 5.16). Кольцо поддерживается опорным роликом 1 и прижимается к ведущему кругу 2 нажимным роликом 3. Можно видеть, что такая схема шлифования обеспечивает наилучшую равностенность кольца.
Рис. 5.16. Схема внутреннего бесцентрового шлифования
Протягивание отверстий. Для протягивания нужна достаточно большая жесткость детали в направлении оси отверстия. В процессе протягивания связь протяжки с деталью (конечная связь) — самоустанавливающаяся (рис. 5.17), поэтому протягивание, подобно развертыванию, дозволяет влиять только на точность самого отверстия.
Протягивание отличается высокой производительностью при больших допустимых припусках на обработку и высокой точностью получаемой поверхности. По широте диапазона допустимого припуска оно сравнимо со всеми видами растачивания, а по точности — с развертыванием.
Подготовка отверстия под протягивание производится сверлением или растачиванием. В случае неперпендикулярности отверстия и опорного торца детали применяют сферическую опору (рис. 329, б). Припуск на протягивание оставляют в среднем величиной 0,5—0,8 мм. Подачу на зуб предусматривают в пределах 0,02—0,1 мм в зависимости от конкретных условий. Обычная точность отверстия после протягивания — 6 квалитет, с шероховатостью поверхности до Ra 0.63.
С целью повысить точность до 5 квалитета при обработке деталей из цветных сплавов часто применяют калибрующие протяжки. Зубья такой протяжки не режут, а скоблят металл (шабрующие зубья) или только сглаживают стенки отверстия (выглаживающие зубья).
При обработке вязких сталей находят применение протяжки с чередующимися секциями уплотняющих и режущих зубьев. Уплотнение материала перед режущими зубьями оказывают благоприятное влияние на процесс, особенно в отношении чистоты обработки, уменьшая возможность надиров.
|
б
Рис. 5.17. Протягивание отверстия: а - опора жесткая; б - опора плавающая
Вследствие необходимости хорошей загрузки протяжного станка и сравнительно высокой стоимости инструмента, протягивание оправдывается в производстве с достаточно большим выпуском деталей.
Особенности обработки глубоких отверстий. Глубокими называют отверстия, у которых длина намного (в 10 и более раз) превышает диаметр. Большая длина отверстия требует особых мер для уменьшения увода инструмента (искривления оси отверстия), возрастающего вместе с увеличением длины. Особенно важно уменьшить увод при сверлении, так как существенно улучшить прямолинейность оси отверстия последующей обработкой очень трудно, а часто и невозможно.
Для глубокого сверления характерны следующие особенности:
1. применяется станок определенного назначения (для глубокого сверления), на котором операция ведется обязательно при вращении детали;
2. в начале обработки сверло обязательно направляется втулкой или предварительно расточенной (иногда еще и прошлифованной) частью самого обрабатываемого отверстия;
3. применяются сверла специальных конструкций с повышенной жесткостью и точностью;
4. предусматривается вымывание стружки из зоны резания смазочно-охлаждающей жидкостью, подаваемой под высоким давлением до 4 МПа и более, благодаря чему отпадает надобность в выводах сверла в процессе сверления.
В качестве инструментов применяют пластинчатые сверла-перки для сравнительно неглубоких отверстий большого диаметра, сверла одностороннего резания и другие конструкции под общим названием «сверла для глубокого сверления». Лучшие из таких сверл уводятся очень незначительно (десятые доли миллиметра при d = 30 мм и l:d = 30-40).
Повышение точности диаметра и уменьшение шероховатости, если в этом есть необходимость, достигают с помощью зенкерования, развертывания или протягивания отверстия. Для зенкерования и развертывания глубоких отверстий характерно применение так называемой обратной подачи. Инструмент не проталкивается в отверстие, а протягивается через него, чтобы тонкая державка работала на растяжение. Улучшить прямолинейность или изменить положение оси отверстия путем растачивания возможно лишь в том случае, если диаметр отверстия достаточно велик для применения каких-либо средств, препятствующих отжиму резца.
Методы отделки поверхностей
Общие сведения. Отделочными называют методы обработки, рассчитанные на получение особенно высокой точности поверхности. К таким методам относятся тонкое точение, хонингование, притирание, полирование, суперфиниширование, выглаживание. Операции отделки отличаются снятием весьма малых припусков.
Малый припуск не позволяет существенно изменять положение поверхности, занимаемое ею до отделки. Поэтому за исключением тонкого точения, все методы отделки характерны самоустанавливающейся конечной связью, т. е. рассчитаны на улучшение только точности обработки. Отделку используют чаще всего для повышения точности поверхности только по форме и по шероховатости, и даже только по шероховатости, так как заданная точность по размеру редко требует отделочных методов. Необходимый малый припуск обеспечивают за счет допуска на окончательный размер поверхности.
Тонкое точение. Процесс тонкого точения характеризуется незначительной глубиной резания, малой подачей и высокой скоростью резания. Обработку ведут алмазным или твердосплавным резцом.
Тонкое точение применяют главным образом при обработке деталей из цветных сплавов, так как эти сплавы легко обрабатываются резцом, но плохо ведут себя при обработке абразивным инструментом.
Точение алмазным резцом дает возможность при автоматическом получении размеров обеспечивать точность поверхности: по диаметру — до 5 квалитета точности; по форме — овальность и конусность, не превышающие 0,003—0,005 мм; по шероховатости — до Ra 0.16.
Высокая точность получается благодаря малому износу доведенного лезвия резца (стойкость алмазного резца 200—400 ч), небольшим силам в процессе резания и высокой точности оборудования. Большая скорость резания не только компенсирует уменьшение производительности в связи с малой подачей, но и способствует уменьшению шероховатости обработанной поверхности.
Для операций тонкого точения используют станки определенного назначения, но наряду с ними и токарные станки, обладающие необходимыми кинематическими данными и точностью. Резцы из твердых сплавов используют для обработки сталей и чугуна, а также для чернового точения цветных сплавов, когда операцию тонкого точения разделяют на два перехода — черновой и чистовой.
Наиболее широко тонкое точение используют для обработки точных отверстий в деталях из цветных сплавов. Трудности шлифования (засаливание круга) здесь особенно возрастают (малый диаметр круга); развертывание также малопроизводительно и к тому же не позволяет влиять на координаты оси отверстия. Тонкое растачивание позволяет влиять на точность размера и формы, обеспечивает высокую стабильность качества обработки и хорошую производительность. Для этой цели выпускают расточные станки, у которых вращается не деталь, а резец (ввиду быстроходности важно, чтобы нагрузки на шпиндель были меньшими). Для небольших деталей применяют горизонтально-расточные станки, а для крупных — вертикальные.
Самый малый и равномерно распределенный по окружности отверстия припуск позволяют обеспечивать горизонтально-расточные двусторонние станки. На таком станке при одной установке детали производят черновое растачивание с одной стороны, а чистовое — с другой.
Для операций растачивания отверстий с параллельными осями используют многошпиндельные станки, допускающие устанавливать нужное расстояние между осями шпинделей, а также специальные станки, изготовляемые как агрегатные.
Хонингование. Хонингование находит широкое применение для обработки отверстий. Обрабатывающим инструментом служит разжимная головка - хон, несущая по окружности абразивные (или алмазные) бруски (рис. 5.23). Бруски закреплены в металлических колодках и с помощью механизма головки могут разжиматься в радиальных направлениях. Головку связывают со шпинделем хонинговального станка не жестко, а шарнирно, чтобы она могла самоустанавливаться по обрабатываемому отверстию детали, закрепленной на столе станка.
Головке, введенной в отверстие, сообщается вращение (V = 30 - 60 м/мин) и возвратно-поступательное движение V = 10 - 15 м/мин). Разжатие брусков в процессе обработки осуществляется автоматически или вручную (головка — инструмент специальный, поэтому конструкции их разнообразны). Давление брусков на поверхность — небольшое (0.4 – 0.8 МПа). Во время обработки применяют обильное охлаждение керосином, часто с примесью минерального масла. Обычная длительность хонингования 1—5 мин.
Припуск (слой металла), снимаемый в одной операции хонингования, может быть малым (до 0,01 мм) и сравнительно большим (до 0,2 мм). Он определяется точностью предшествующей обработки и показателями точности поверхности, требуемыми после хонингования.
|
|
|
|
|
|
|
|
|
Рис. 5.23. Хон
Малые припуски характерны для весьма точных операций, выполняемых после соответственно точной предшествующей обработки и для операций, предусматриваемых лишь с целью улучшить точность поверхности по форме и шероховатости. Большие припуски получаются в операциях, выполняемых сразу после растачивания (шлифование затруднительно вследствие большого веса или неудобной формы детали).
Заданная точность положения отверстия должна быть достигнута до хонингования. Хонингованием получают отверстия 5 квалитета точности и более точные, при шероховатости до Ra 0.02.
Притирание. Притирание — тонкая абразивная обработка, применяемая для получения весьма точных поверхностей. Операции притирания выполняют с помощью ручных притиров или на притирочных станках.
Ручной притир для наружной цилиндрической поверхности изготовляют в виде колодок, охватывающих поверхность, для отверстия притир делают разжимным, а для плоской поверхности пользуются точной плитой.
Притирание цилиндрических поверхностей ручными притирами выполняют как машинно-ручную операцию (вращение детали или цритира — механическое), а плоских — или как машинно-ручную (плита в форме диска вращается, деталь прижимают к плите и перемещают по ней вручную) или же как полностью ручную (плита неподвижна). На притирочных станках необходимые движения осуществляются без участия рабочего.
Ручные притиры делают из чугуна (меди, свинца) и других материалов, более мягких, чем материал обрабатываемой детали. Благодаря этому абразивные зерна, наносимые в среде смазки на поверхность притира, вдавливаются и удерживаются в ней. Вдавливание (шаржирование) либо производится заранее (стальным роликом), либо происходит в процессе обработки.
Производительность и точность притирания зависит от зернистости и рода абразива, смазки и режима обработки. Из абразивов применяют корундовые и карборундовые микропорошки, окись хрома, окись железа, и др., а также пасты ГОИ. В качестве смазки используют керосин, бензин, минеральные масла и др. Скорость вращения при ручном притирании - в пределах 10 — 30 м/мин, и меньше, так как при точной обработке возможно нагревание детали.
Притирание позволяет получать поверхности, весьма точные по форме (погрешность в пределах 0,001 мм) и по шероховатости (вплоть до Ra 0.01).
На притирочном станке детали помещаются