Механические свойства листов из сплава В-1208-Т1 при различных температурах

Характеристика Значения характеристики при температуре испытания, °С
-196 -70 +20 +125 +150 +175
σв, МПа 510–525 480–485 425–430 390–395 365–375
σ0,2, МПа 425–450 395–410 395–400 350–355 330–340
δ, % 8–8,5 10–13 10–12,5 17–18 21–23 22–23
KCU, кДж/м2 180–202 169–180

При отрицательных температурах испытания прочностные свойства повышаются на 5–10%; при повышении температуры испытания от 125 до 175°С, монотонно снижаясь, – остаются на достаточно высоком уровне. Ударная вязкость при отрицательной температуре повышается на 6%.

Определена статическая чувствительность листов к отверстию(σв.отвв) при растяжении при 20°С (Kt=2,6). Листы практически не чувствительны к концентратору, отношение σв.отвв составляет ~1.

Механические свойства после эксплуатационных нагревов в течение 100 и 1000 ч при температуре 125°С (σв=460–470 МПа после выдержки в течение 100 ч, σв=455–460 МПа – после 1000 ч) находятся на уровне с исходными значениями, а при 150°С (σв=445–460 МПа – после 100 ч, σв=420–430 МПа – после 1000 ч) и 175°С (σв=415–425 МПа – после 100 ч, σв=390–395 МПа – после 1000 ч) незначительно снижаются.

Исследования коррозионной стойкости листов показали следующие результаты: глубина межкристаллитной коррозии (МКК) – до 0,16 мм, расслаивающая коррозия (РСК): 3 балл. При определении склонности к коррозионному растрескиванию (КР) на установке «Сигнал» образцы простояли ˃45 сут без разрушения при напряжении 270 МПа в поперечном направлении относительно оси прокатки.

Исследована свариваемость листов из сплава В-1208-Т1. Сварку проводили поперек направления прокатки листа. Сплав хорошо сваривается автоматической аргоно-дуговой сваркой (ААрДЭС) и сваркой трением с перемешиванием (СТП). ААрДЭС осуществляется с применением присадочной проволоки Св-1201. Прочность сварных соединений после различных режимов термической обработки приведена в табл. 4.

Таблица 4

Свойства сварных соединений листов из сплава В-1208

Вид сварки Режим термообработки σв.свв Угол изгиба α, град KСUшов, кДж/м2
Автоматическая аргоно-дуговая (ААрДЭС) Закалка+сварка+искусственное старение 0,75
Закалка+искусственное старение+сварка 0,70
То же+ искусственное старение 0,80
Трением с переме- шиваним (СТП) Закалка+сварка+искусственное старение 0,70
Закалка+искусственное старение+сварка 0,80
То же+ искусственное старение 0,80


Исследования показали, что применение дополнительной термической обработки (искусственного старения) после сварки повышает прочностные свойства сварных соединений, при сохранении характеристик пластичности (α) и ударной вязкости на достаточно высоком уровне.

Механические свойства листов из сплава В-1208-Т1 при различных температурах - student2.ru

Рис. 3. Микроструктура сварных соединений листов из сплава В-1208:

а – ААрДЭС, ×200; б – СТП, ×50

На рис. 3 представлена микроструктура сварных соединений листов, выполненных ААрДЭС (рис. 3, а) и СТП (рис. 3, б). В сварных соединениях отсутствуют дефекты. Из-за больших скоростей охлаждения наблюдается резкий переход от сварного шва к основному металлу.

Листы из сплава В-1208-Т1 превосходят листы из отечественного 1201-Т1 и зарубежного 2219-Т8 (США) сплавов-аналогов по прочностным и пластическим характеристикам (табл. 5).

Таблица 5

Сравнительные характеристики листов из сплавов В-1208-Т1, 1201-Т1, 2219-Т8

Сплав σв σ0,2 δ, % Е, ГПа KCU, кДж/м2
МПа
В-1208-Т1 9,5 169–180
1201-Т1
2219-Т8

Заключение

Разработан новый сплав В-1208-Т1 системы Al–Cu–Mn. Отмечена его высокая технологическая пластичность при промышленном изготовлении полуфабрикатов. К настоящему времени на серийном оборудовании ОАО «КУМЗ» освоено опытно-промышленное производство листов, а также поковок и прессованных профилей.

Листы из сплава В-1208-Т1, дополнительно легированного Ag, Sc и Zr, имеют повышенные прочностные характеристики как основного материала, так и сварного соединения, по сравнению с серийными сплавами-аналогами (1201-Т1, 2219-Т8). Правка растяжением после закалки способствует повышению прочностных характеристик, практически не снижая пластичности.

Сплав В-1208-Т1 сваривается основными методами сварки ААрДЭС и СТП. Прочность сварных соединений при 20°С составляет 0,7–0,8 от прочности основного металла.

Листы из сплава В-1208-Т1 обладают высокими прочностными характеристиками при комнатной, повышенных и отрицательных температурах и рекомендуются к применению для сварных и несварных конструкций (топливные баки) изделий космической техники, работающих длительно в интервале температур от -196 до +150°С, кратковременно – до +175°С, взамен аналогичных полуфабрикатов из сплава 1201-Т1, что позволит повысить прочность и надежность конструкции.

Авторы статьи выражают благодарность ведущему инженеру ВИАМ Е.Н. Иоде, а также специалистам ОАО «КУМЗ» Б.В. Овсянникову и В.И. Попову, которые внесли неоценимый вклад в проведенную работу.

ЛИТЕРАТУРА REFERENCE LIST

1. Каблов Е.Н. Стратегические направления развития материалов и технологий их переработки на период до 2030 года //Авиационные материалы и технологии. 2012. №S. С. 7–17.
2. Сплав на основе алюминия: пат. 2447173 Рос. Федерация; опубл. 05.04.2011.
3. Антипов В.В., Сенаторова О.Г., Ткаченко Е.А., Вахромов Р.О. Алюминиевые деформируемые сплавы //Авиационные материалы и технологии. 2012. №S. С. 167–182.
4. Клочков Г.Г., Плотников А.Д. Применение новых сплавов в ракетно-космической технике //Цветные металлы. 2013. №9. С. 54–57.
5. Фридляндер И.Н., Антипов В.В., Колобнев Н.И., Якимова Е.Г. Конструкционные жаропрочные алюминиевые сплавы /В кн. 75 лет. Авиационные материалы. Избранные труды «ВИАМ» 1932–2007: Юбилейный. науч.-технич. сб. М.: ВИАМ. 2007. С. 172–180.
6. Rioja R.J., Denzer D.K., Mooy D., Venema G. Lighter and Stiffer Materials for Use in Space Vehicles /Proceedings of the 13-th International Conference on Aluminum Alloys (ICAA-13). 2012. P. 593–598.
7. Polmear I.J. Light Alloys: From Traditional Alloys to Nanocrystals //Elsevier Butterworth-Heinemann. U.K. 2006. 132 p.
8. Сенаторова О.Г., Колобнев Н.И., Ткаченко Е.А. И.Н. Фридляндер и его сплавы //Цветные металлы. 2013. №9. С. 28–30.
9. Каблов Е.Н. Материалы для изделия «Буран» – инновационные решения формирования шестого технологического уклада //Авиационные материалы и технологии. 2013. №S1. С. 3–9.
10. Доспехи для «Бурана». Материалы и технологии ВИАМ для МКС «Энергия–Буран» /Под общ. ред. Е.Н. Каблова. М.: Фонд «Наука и жизнь». 2013. С. 127.
11. Мохов В. Модуль для Бурана //Новости космонавтики. 1998. №23/24.
12. Фридляндер И.Н. Воспоминания о создании авиакосмической и атомной техники из алюминиевых сплавов. М.: Наука. 2005. 277 с.
13. Anil K.S., Raja K.M., Anirban M., Ahmet A. Vehicle lightweighting: challenges and opportu-nities with aluminum /Proceedings of the 13-th International Conference on Aluminum Alloys (ICAA-13). 2012. P. 609–622.
14. Елагин В.И. Легирование деформируемых алюминиевых сплавов переходными металлами. М.: Металлургия. 1975. 248 с.
15. Чирков Е.Ф. Темп разупрочнения при нагревах – критерий оценки жаропрочности кон-струкционных сплавов систем Al‒Cu‒Mg и Al‒Cu //Труды ВИАМ. 2013. №2. Ст. 02
(viam-works.ru).
16. Григорьев М.В., Антипов В.В., Вахромов Р.О. и др. Структура и свойства слитков из сплава системы Al‒Cu‒Mg с микродобавками серебра //Авиационные материалы и технологии. 2013. №3. С. 3–6.
17. Иванова А.О., Вахромов Р.О., Григорьев М.В., Сенаторова О.Г. Исследование влияния малых добавок серебра на структуру и свойства ресурсных сплавов системы Al–Cu–Mg //Труды ВИАМ. 2014. №10. Ст. 01 (viam-works.ru).
18. Davydov V.G., Rostova T.D., Zakharov V.V. Scientific principles of making an alloying addition of scandium to aluminium alloys //Material Science and Engineering. A 280. 2000. P. 30–36.
19. Royset J., Ryum N. Scandium in aluminium alloys //International Material Reviews. 2005. V. 50. №1. P. 19–44.
20. Sawtell R.R., Jensen C.L. Mechanical properties and microstructures of Al–Mg–Sc alloys //Metallurgical and Material Transactions A. 1990. V. 21. №1. P. 421–430.
21. Ocenasek V., Slamova M. Effect of Sc and Zr on the structure and properties of Al–Mn1.5 alloy //Material Characteristics. 2001. V. 47. P. 157–162.
22. Fuller C.B., Seidman D.N., Dunand D.C. Evolution of nanoscale precipitates in Al microal-loyed with Sc and Er //Acta Materialia. 2003. V. 51. P. 4803–4814.
23. Mondol S., Praveen G., Kumar S. et al. Effect of Addition of Sc and Mg on 2219 Al Alloy /Proceedings of the 12-th International Conference on Aluminum Alloys (ICAA-12). 2010.
P. 447–452.
24. Lee Y.Y. Scandium Effect on Mechanical and Physical Properties for 2x19 Al Alloy /Proceedings of the 12-th International Conference on Aluminum Alloys (ICAA-12). 2010. P. 2281–2286.
25. Nikulin I., Kipelova A., Gazizov M. et al. Novel Al–Cu–Mg–Ag Alloy for High Temperature Applications /Proceedings of the 12-th International Conference on Aluminum Alloys (ICAA-12). 2010. P. 2303–2308.
26. Vural M., Caro J. Experimental analysis and constitutive modeling for the newly developed
2139-T8 alloy //J. Material Sci. Eng. 2009. V. 520. №1–2. P. 56–65.
27. Pouget G., Sigli C. Thermal Stability of Al–Cu–Mg Alloys /Proceedings of the 14-th ICAA. 2014. P. 691–696.
28. Захаров В.В. Особенности кристаллизации алюминиевых сплавов, легированных скан-дием //МиТОМ. 2011. №9. С. 12–18.
29. Фридляндер И.Н. Алюминиевые деформируемые конструкционные сплавы. М.: Металлургия. 1979. 208 с.

Наши рекомендации