Математическое обеспечение анализа на системном логическом уровне

Объектами проектирования на системном уровне являются такие сложные системы, как производственные предприятия, транспортные системы, вычислительные системы и сети, автоматизированные системы проектирования и управления и т.п. В этих приложениях анализ процессов функционирования систем связан с исследованием прохождения через систему потока заявок (иначе называемых требованиями или транзактами). Разработчиков подобных сложных систем интересуют прежде всего такие параметры, как производительность (пропускная способность) проектируемой системы, продолжительность обслуживания (задержки) заявок в системе, эффективность используемого в системе оборудования.

Заявками могут быть заказы на производство изделий, задачи, решаемые в вычислительной системе, клиенты в банках, грузы, поступающие на транспортировку и др. Очевидно, что параметры заявок, поступающих в систему, являются случайными величинами и при проектировании могут быть известны лишь их законы распределения и числовые характеристики этих распределений. Поэтому анализ функционирования на системном уровне, как правило, носит статистический характер. В качестве математического аппарата моделирования удобно принять теорию массового обслуживания, а в качестве моделей систем на этом уровне использовать системы массового обслуживания (СМО).

Типичными выходными параметрами в СМО являются числовые характеристики таких величин, как время обслуживания заявок в системе, длины очередей заявок на входах, время ожидания обслуживания в очередях, загрузка устройств системы, а также вероятность обслуживания в заданные сроки и т.п.

В простейшем случае СМО представляет собой некоторое средство (устройство), называемое обслуживающим аппаратом (ОА), вместе с очередями заявок на входах. Более сложные СМО состоят из многих взаимосвязанных ОА. Обслуживающие аппараты СМО в совокупности образуют статические объекты СМО, иначе называемые ресурсами. Например, в вычислительных сетях ресурсы представлены аппаратными и программными средствами.

В СМО, кроме статических объектов, фигурируют динамические объекты – транзакты. Например, в вычислительных сетях динамическими объектами являются решаемые задачи и запросы на информационные услуги.

Состояние СМО характеризуется состояниями составляющих ее объектов. Например, состояния ОА выражаются булевыми величинами, значения которых интерпретируются как true (занято) и false (свободно), и длинами очередей на входах ОА, принимающими неотрицательные целочисленные значения. Переменные, характеризующие состояние СМО, будем называть переменными состояния или фазовыми переменными.

Правило, согласно которому заявки выбирают из очередей на обслуживание, называют дисциплиной обслуживания, а величину, выражающую преимущественное право на обслуживание, – приоритетом.

Все транзакты имеют одинаковые приоритеты. Среди бесприоритетных

дисциплин наиболее популярны дисциплины FIFO (первым пришел – первым обслужен), LIFO (последним пришел – первым обслужен) и со случайным выбором заявок из очередей.

В приоритетных, для заявок каждого приоритета на входе ОА выделяется своя очередь. Заявка из очереди с низким приоритетом поступает на обслуживание, если пусты очереди с более высокими приоритетами. Различают приоритеты абсолютные, относительные и динамические. Заявка из очереди с более высоким абсолютным приоритетом, поступая на вход занятого ОА, прерывает уже начатое обслуживание заявки более низкого приоритета. В случае относительного приоритета прерывания не происходит, более высокоприоритетная заявка ждет окончания уже начатого обслуживания. Динамические приоритеты могут изменяться во время нахождения заявки в СМО.

Исследование поведения СМО, т.е. определение временных зависимостей переменных, характеризующих состояние СМО, при подаче на входы любых требуемых в соответствии с заданием на эксперимент потоков заявок, называют имитационным моделированием СМО. Имитационное моделирование проводят путем воспроизведения событий, происходящих одновременно или последовательно в модельном времени. При этом под событием понимают факт изменения значения любой фазовой переменной.

Подход, альтернативный имитационному моделированию, называют аналитическим исследованием СМО. Аналитическое исследование заключается в получении формул для расчета выходных параметров СМО с последующей подстановкой значений аргументов в эти формулы в каждом отдельном эксперименте.

Модели СМО, используемые при имитационном и аналитическом моделировании, называются имитационными и аналитическими соответственно.

Аналитические модели удобны в использовании, поскольку для аналитического моделирования не требуются сколько–нибудь значительные затраты вычислительных ресурсов, часто без постановки специальных вычислительных экспериментов разработчик может оценить характер влияния аргументов на выходные параметры, выявить те или иные общие закономерности в поведении системы. Но, к сожалению, аналитическое исследование удается реализовать только для частных случаев сравнительно несложных СМО. Для сложных СМО аналитические модели если и удается получить, то только при принятии упрощающих допущений, ставящих под сомнение адекватность модели.

Поэтому основным подходом к анализу САПР на системном уровне проектирования считают имитационное моделирование, а аналитическое исследование используют при предварительной оценке различных предлагаемых вариантов систем.

Некоторые компоненты СМО характеризуются более чем одним входным и (или) выходным потоками заявок. Правила выбора одного из возможных направлений движения заявок входят в соответствующие модели компонентов. В одних случаях такие правила относятся к исходным данным (например, выбор направления по вероятности), но в некоторых случаях желательно найти оптимальное управление потоками в узлах разветвления. Тогда задача моделирования становится более сложной задачей синтеза, характерными примерами являются маршрутизация заявок или синтез расписаний и планов.

Аналитические модели СМО

Как отмечено выше, аналитические модели СМО удается получить при довольно серьезных допущениях. К числу типичных допущений относятся следующие.

Во–первых, как правило, считают, что в СМО используются бесприоритетные дисциплины обслуживания типа FIFO.

Во–вторых, времена обслуживания заявок в устройствах выбираются в соответствии с экспоненциальным законом распределения.

В–третьих, в аналитических моделях СМО входные потоки заявок

аппроксимируются простейшими потоками, т.е. потоками, обладающими свойствами стационарности, ординарности (невозможности одновременного поступления двух заявок на вход СМО), отсутствия последействия.

В большинстве случаев модели СМО отображают процессы с конечным множеством состояний и с отсутствием последействия. Такие процессы называют конечными марковскими цепями.

Марковские цепи характеризуются множеством состояний S, матрицей вероятностей переходов из одного состояния в другое и начальными условиями (начальным состоянием). Удобно представлять марковскую цепь в виде графа, в котором вершины соответствуют состояниям цепи, дуги – переходам, веса дуг – вероятностям переходов (если время дискретно) или интенсивностям переходов ( если время непрерывно).

Отметим, что интенсивностью перехода называют величину Vij =lim Pij(t1) / t1 при t1→0, где Pij(t1) – вероятность перехода из состояния Si в состояние Sj за время t1. Обычно принимается условие

Математическое обеспечение анализа на системном логическом уровне - student2.ru

что означает Математическое обеспечение анализа на системном логическом уровне - student2.ru

где N – число состояний. На рис. 15.6приведен пример марковской цепи

в виде графа с состояниями S1,...,S4, а в таблице 15.1 представлена матри-

ца интенсивностей переходов для этого примера.

Математическое обеспечение анализа на системном логическом уровне - student2.ru

Рис.15.6. Пример марковской цепи

Большинство выходных параметров СМО можно определить, используя информацию о поведении СМО, т.е. информацию о состояниях СМО в установившихся (стационарных) режимах и об их изменениях в переходных процессах. Эта информация имеет вероятностную природу, что обусловливает описание поведения СМО в терминах вероятностей нахождения системы в различных состояниях. Основой такого описания, а следовательно, и многих аналитических моделей СМО являются уравнения Колмогорова, которые можно получить следующим образом.

Таблица 15.1 Матрица интенсивности переходов

Математическое обеспечение анализа на системном логическом уровне - student2.ru

Изменение вероятности Pi нахождения системы в состоянии Si за время t1 есть вероятность перехода системы в состояние Si из любых других состояний за вычетом вероятности перехода из состояния Si в другие состояния за время t1, т.е.

Математическое обеспечение анализа на системном логическом уровне - student2.ru

где Pi(t) и Pj(t) – вероятности нахождения системы в состояниях Si и Sj

соответственно в момент времени t, а Pji(t1) и Pik(t1) – вероятности изменения состояний в течение времени t1; произведение вида Pji(t1)Pj(t) есть безусловная вероятность перехода из Sj в Si, равная условной вероятности перехода, умноженной на вероятность условия; J и K – множества индексов инцидентных вершин по отношению к вершине Si по входящим и исходящим дугам на графе состояний соответственно

Наши рекомендации