Компоненты математического обеспечения
К математическому обеспечению анализа относят математические модели, численные методы, алгоритмы выполнения проектных процедур. Компоненты МО определяются базовым математическим аппаратом, специфичным для каждого из иерархических уровней проектирования.
На микроуровне типичные математические модели (ММ) представлены дифференциальными уравнениями в частных производных (ДУЧП) вместе с краевыми условиями. К этим моделям, называемым распределенными, относятся многие уравнения математической физики.
Объектами исследования здесь являются поля физических величин, что требуется при анализе прочности строительных сооружений или машиностроительных деталей, исследовании процессов в жидких средах, моделировании концентраций и потоков частиц и т.п.
Число совместно исследуемых различных сред (число деталей, слоев материала, фаз агрегатного состояния) в практически используемых моделях микроуровня не может быть большим из-за сложностей вычислительного характера. Резко снизить вычислительные затраты в многокомпонентных средах можно, только применив иной подход к моделированию, основанный на принятии определенных допущений.
Допущение, выражаемое дискретизацией пространства, позволяет перейти к моделям макроуровня. Моделями макроуровня, называемыми также сосредоточенными, являются системы алгебраических и обыкновенных дифференциальных уравнений, поскольку независимой переменной здесь остается только время t. Упрощение описания отдельных компонентов (деталей) позволяет исследовать модели процессов в устройствах, приборах, механических узлах, число компонентов в которых может доходить до нескольких тысяч.
В тех случаях, когда число компонентов в исследуемой системе превышает некоторый порог, сложность модели системы на макроуровне вновь становится чрезмерной. Поэтому, принимая соответствующие допущения, переходят на функционально-логический уровень. На этом уровне используют аппарат передаточных функций для исследования аналоговых (непрерывных) процессов или аппарат математической логики и конечных автоматов, если объектом исследования является дискретный процесс, т.е. процесс с дискретным множеством состояний.
Наконец, для исследования еще более сложных объектов, примерами которых могут служить производственные предприятия и их объединения, вычислительные системы и сети, социальные системы и другие подобные объекты, применяют аппарат теории массового обслуживания, возможно использование и некоторых других подходов, например, сетей Петри. Эти модели относятся к системному уровню моделирования.
Требования к математическим моделям и численным методам в САПР
Основными требованиями к математическим моделям являются требования адекватности, точности, экономичности. Модель всегда лишь приближенно отражает некоторые свойства объекта. Адекватность имеет место, если модель отражает заданные свойства объекта с приемлемой точностью. Под точностью понимают степень соответствия оценок одноименных свойств объекта и модели.
Экономичность (вычислительная эффективность) определяется затратами ресурсов, требуемых для реализации модели. Поскольку в САПР используются математические модели, далее речь пойдет о характеристиках именно математических моделей, и экономичность будет характеризоваться затратами машинных времени и памяти.
Адекватность оценивается перечнем отражаемых свойств и областями адекватности. Область адекватности, это область в пространстве параметров, в пределах которой погрешности модели остаются в допустимых пределах. Например, область адекватности линеаризованной модели поверхности детали определяется системой неравенств
где εij и εдоп - допущенная и предельно допустимая относительные погрешности моделирования поверхности, максимум берется по всем координатам и контролируемым точкам.
Отметим, что в большинстве случаев области адекватности строятся в пространстве внешних переменных. Так, область адекватности модели электронного радиоэлемента обычно выражает допустимые для применения модели диапазоны изменения моделируемых температур, внешних напряжений, частот.
Аналогичные требования по точности и экономичности фигурируют при выборе численных методов решения уравнений модели.