Информационная технология экспертных систем
Характеристика и назначение
Наибольший прогресс среди компьютерных информационных систем отмечен в области разработки экспертных систем, основанных на использовании искусственного интеллекта. Экспертные системы дают возможность менеджеру или специалисту получать консультации экспертов по любым проблемам, о которых этими системами накоплены знания.
Под искусственным интеллектом обычно понимают способности компьютерных систем к таким действиям, которые назывались бы интеллектуальными, если бы исходили от человека. Чаще всего здесь имеются в виду способности, связанные с человеческим мышлением. Работы в области искусственного интеллекта не ограничиваются экспертными системами. Они также включают в себя создание роботов, систем, моделирующих нервную систему человека, его слух, зрение, обоняние, способность к обучению.
Решение специальных задач требует специальных знаний. Однако не каждая компания может себе позволить держать в своем штате экспертов по всем связанным с ее работой проблемам или даже приглашать их каждый раз, когда проблема возникла. Главная идея использования технологии экспертных систем заключается в том, чтобы получить от эксперта его знания и, загрузив их в память компьютера, использовать всякий раз, когда в этом возникнет необходимость. Являясь одним из основных приложений искусственного интеллекта, экспертные системы представляют собой компьютерные программы, трансформирующие опыт экспертов в какой-либо области знаний в форму эвристических правил (эвристик). Эвристики не гарантируют получения оптимального результата с такой же уверенностью, как обычные алгоритмы, используемые для решения задач в рамках технологии поддержки принятия решений. Однако часто они дают в достаточной степени приемлемые решения для их практического использования. Все это делает возможным использовать технологию экспертных систем в качестве советующих систем.
Сходство информационных технологий, используемых в экспертных системах и системах поддержки принятия решений, состоит в том, что обе они обеспечивают высокий уровень поддержки принятия решений. Однако имеются три существенных различия. Первое связано с тем, что решение проблемы в рамках систем поддержки принятия решений отражает уровень ее понимания пользователем и его возможности получить и осмыслить решение. Технология экспертных систем, наоборот, предлагает пользователю принять решение, превосходящее его возможности. Второе отличие указанных технологий выражается в способности экспертных систем пояснять свои рассуждения в процессе получения решения. Очень часто эти пояснения оказываются более важными для пользователя, чем само решение. Третье отличие связано с использованием нового компонента информационной технологии - знаний.
Основные компоненты
Основными компонентами информационной технологии, используемой в экспертной системе, являются (рис. 3.17): интерфейс пользователя, база знаний, интерпретатор, модуль создания системы.
Рис. 3.17. Основные компоненты информационной технологии экспертных систем
Интерфейс пользователя. Менеджер (специалист) использует интерфейс для ввода информации и команд в экспертную систему и получения выходной информации из нее. Команды включают в себя параметры, направляющие процесс обработки знаний. Информация обычно выдается в форме значений, присваиваемых определенным переменным.
Менеджер может использовать четыре метода ввода информации: меню, команды, естественный язык и собственный интерфейс.
Технология экспертных систем предусматривает возможность получать в качестве выходной информации не только решение, но и необходимые объяснения. Различают два вида объяснений:
- объяснения, выдаваемые по запросам. Пользователь в любой момент может потребовать от экспертной системы объяснения своих действий;
- объяснения полученного решения проблемы. После получения решения пользователь может потребовать объяснений того, как оно было получено. Система должна пояснить каждый шаг своих рассуждении, ведущих к решению задачи.
Хотя технология работы с экспертной системой не является простой, пользовательский интерфейс этих систем является дружественным и обычно не вызывает трудностей при ведении диалога.
База знаний. Она содержит факты, описывающие проблемную область, а также логическую взаимосвязь этих фактов. Центральное место в базе знаний принадлежит правилам. Правило определяет, что следует делать в данной конкретной ситуации, и состоит из двух частей: условия, которое может выполняться или нет, и действия, которое следует произвести, если условие выполняется.
Все используемые в экспертной системе правила образуют систему правил, которая даже для сравнительно простой системы может содержать несколько тысяч правил.
Все виды знаний в зависимости от специфики предметной области и квалификации проектировщика (инженера по знаниям) с той или иной степенью адекватности могут быть представлены с помощью одной либо нескольких семантических моделей. К наиболее распространенным моделям относятся логические, продукционные, фреймовые и семантические сети (см. гл. 16,17).
Интерпретатор. Это часть экспертной системы, производящая в определенном порядке обработку знаний (мышление), находящихся в базе знаний. Технология работы интерпретатора сводится к последовательному рассмотрению совокупности правил (правило за правилом). Если условие, содержащееся в правиле, соблюдается, выполняется определенное действие, и пользователю предоставляется вариант решения его проблемы.
Кроме того, во многих экспертных системах вводятся дополнительные блоки: база данных, блок расчета, блок ввода и корректировки данных. Блок расчета необходим в ситуациях, связанных с принятием управленческих решений. При этом важную роль играет база данных, где содержатся плановые, физические, расчетные, отчетные и другие постоянные или оперативные показатели. Блок ввода и корректировки данных используется для оперативного и своевременного отражения текущих изменений в базе данных.
Модуль создания системы. Он служит для создания набора (иерархии) правил. Существуют два подхода, которые могут быть положены в основу модуля создания системы: использование алгоритмических языков программирования и использование оболочек экспертных систем.
Для представления базы знаний специально разработаны языки Лисп и Пролог, хотя можно использовать и любой известный алгоритмический язык.
Оболочка экспертных систем представляет собой готовую программную среду, которая может быть приспособлена к решению определенной проблемы путем создания соответствующей базы знаний. В большинстве случаев использование оболочек позволяет создавать экспертные системы быстрее и легче в сравнении с программированием.
4. АРХИТЕКТУРА ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА