Этапы освоения ядерной энергии
Открытие и использование ядерной энергии является одним из крупнейших событий прошедшего века. К сожалению, это величайшее достижение науки заявило о себе огромными разрушениями японских городов Хиросима и Нагасаки, на которые в августе 1945 года были сброшены американские атомные бомбы. Но затем наступил и июнь 1954 года, когда в Советском Союзе в г. Обнинске была пущена первая в мире атомная электрическая станция мощностью 5 МВт, открывшая дорогу мирному использованию энергии атома. 27 июня 1954 года признан в мире как день рождения атомной энергетики. Работы над проектами энергетических реакторов начались сразу же после успешного испытания в 1949 году отечественного ядерного оружия и велись теми же темпами.
Ядерная энергетика обязана своим появлением в первую очередь природе открытого в 1932 г. нейтрона. Нейтроны входят в состав всех ядер, кроме ядра водорода. Связанные нейтроны в ядре существуют бесконечно долго. В свободном виде они не долговечны, так как или распадаются с периодом полураспада 11,7 мин, превращаясь в протон и испуская при этом электрон и нейтрино, или быстро захватываются ядрами атомов.
По значению энергии нейтронов Епих подразделяют на тепловые, промежуточные и быстрые. Тепловыми называют такие нейтроны, скорость которых равна скорости их теплового движения, устанавливающейся при тепловом равновесии со средой.
В 1938 году немецкие физики О. Ган и Ф. Штрасман обнаружили, что в результате бомбардировки урана нейтронами образуются ядра новых элементов, в том числе бария. Вскоре австрийские физики Л. Майтнер и О. Фриш установили, что ядро изотопа урана с атомным весом 235 под воздействием нейтрона разбивается на два осколка. Этот процесс был назван делением ядер.
В 1940 году советские ученые Г.Н. Флеров и К.А. Петржак обнаружили процесс самопроизвольного деления ядер атомов, являющегося разновидностью радиоактивного распада ядра. При делении ядер тяжелых элементов (уран, плутоний, торий) масса новых элементов оказывается меньше массы исходных ядер, т.е. в результате реакции деления происходит потеря массы, сопровождаемая большим выделением энергии. При этом число нейтронов, испускаемых при делении ядра 235Uоказывается равным 2 или 3, что позволяет осуществить цепную реакцию.
Все эти открытия были сделаны накануне второй мировой войны, развязанной фашистской Германией, и стали основой драматической гонки за лидерство в создании атомной бомбы. Первый атомный реактор был пущен в 1942 году в США под руководством Э. Ферми, а первый в Европе был построен в СССР в 1946 году под руководством И.В. Курчатова. Успешно завершив разработку вслед за США ядерного оружия советские ученые стали лидерами в мирном применении атомной энергии.
Современная ядерная энергетика основана на использования
энергии, выделяющейся при делении природного изотопа урана-235
или получаемых искусственным путем изотопа урана-233 и плуто-
ния-239, которые принято называть делящимися материалами или
ядерным топливом. Природный уран содержит 99,28 % 238Uи всего 0,71 %
235Uи 0,006 % 233U.
Самоподдерживающаяся цепная реакция деления ядер тяжелых элементов состоит в том, что при соединении нейтрона с ядром образуется возбужденное ядро, которое может оказаться настолько неустойчивым, что распадается на два осколка – два ядра более лёгких элементов с испусканием двух или трех новых нейтронов, вызывающих деление следующих ядер. Отношение числа вновь созданных нейтронов к соответствующему числу исходных нейтронов называется коэффициентом размножения, который для реакции с 235Uна медленных нейтронах равен 2,46. Каждый из испускаемых при делении ядер нейтронов обладает значительной энергией, достаточной для деления всех изотопов урана, а также 232Thи 239Рu. Однако если энергию нейтронов
уменьшить до 0,025– 0,30 эВ, то такие тепловые нейтроны будут не способны вызвать деление ядер 238Uи 232Th.
Появляющиеся при делении ядер нейтроны подразделяются на мгновенные и запаздывающие. Мгновенные нейтроны составляют более 99% нейтронов деления. Запаздывающие нейтроны испускаются осколками деления в среднем через 12,4 с после момента деления ядра и составляют менее 1% нейтронов деления. Несмотря на это, они играют огромную роль в управлении цепной реакцией деления ядер и регулировании выделяемой энергии.
Технологический процесс получения энергии путем расщепления ядер тяжелых элементов намного сложнее процессов, основанных на сжигании топлива, и требует более тонкой и надежной системы регулирования. Нарушение устойчивости регулируемой цепной реакции может привести к непоправимым последствиям. Но, несмотря на эти сложности и риски после пуска первой АЭС начинается бурный рост атомной энергетики. За четверть века пройден путь от мощности в 5 МВт до крупнейших атомных электростанций с энергоблоками единичной мощностью по 1000 МВт.
Установленная мощность атомных электростанций мира на 2011 год превысила 350 млн. кВт. Общее число реакторов, работающих на АЭС мира, превысило 450. В США работает более 100 реакторов с общей мощностью 101,5 млн. кВт, во Франции – 58 реакторов на 63 млн. кВт, в Японии – 52 реактора на 45 млн. кВт , в России – 33 реактора на 23 млн. кВт.
В чем причина такого стремительного роста? Главная положительная особенность ядерного горючего, используемого на атомных электростанциях, состоит в его высокой «калорийности», что позволяет свести к минимуму транспортные расходы, связанные с доставкой топлива. Из 1 кг урана можно получить столько же теплоты, сколько при сжигании примерно 3000 т каменного угля. Поэтому АЭС в первую очередь целесообразны в тех регионах, где развита промышленность и ощутим дефицит органического топлива. Эксплуатация атомных электростанций в России дает в целом по стране снижение расхода топлива в энергетике на 35– 40 млн. т у. т. ежегодно.
Атомные электростанции имеют большое преимущество перед ТЭС в отношении сохранения чистоты атмосферного воздуха, так как они работают без выбросов золы, вредных оксидов серы и азота. В связи с истощением запасов органического топлива атомные электростанции сегодня представляют пока единственный реальный путь обеспечения быстро растущих потребностей человечества в электроэнергии.
Быстрое развитие атомной энергетики стало возможным благодаря большому размаху работ по ядерной физике, созданию и освоению новых типов. атомных реакторов, Но были и периоды. негативного отношении к АЭС после Чернобыля (!986 г.) и Фукусимы (2011 г.), которые заканчивались новым разворотом в сторону ядерной энергетики.
АЭС на тепловых нейтронах
На современных атомных электростанциях управляемая реакция деления ядер осуществляется в ядерных энергетических реакторах на тепловых нейтронах. Основными элементами реактора на тепловых нейтронах (рисунок6.1) являются тепловыделяющие элементы (ТВЭЛы) и замедлитель, образующие так называемую активную зону. ТВЭЛ представляет собой заполненную ядерным топливом коррозионноустойчивую защитную трубку-оболочку небольшого диаметра из специальных сплавов. Между ТВЭЛами находится замедлитель. Через активную зону прокачивается теплоноситель, охлаждающий тепловыделяющие элементы и осуществляющей таким образом отвод тепла из активной зоны. Функции замедлителя и теплоносителя может выполнять одно и то, же вещество, например обычная или тяжелая вода. Для уменьшения утечки нейтронов из активной зоны ее окружают отражателем, выполненным из того же материала, что и замедлитель. Часть нейтронов, вылетающих из активной зоны, сталкивается с ядрами отражателя и возвращается в активную зону. Окруженная отражателем нейтронов активная зона помещается в корпусе реактора, снабженном бетонной биологической защитой от радиоактивных излучений, возникающих в процессе ядерных реакций. Бетон содержит до 10% (по массе) физически связанных молекул воды и замедляет быстрые нейтроны, а затем поглощает их. Роль защиты в реакторе выполняют также отражатель и стенки корпуса реактора. Толщина бетонной защиты выбирается такой, чтобы проходящие через нее радиоактивные излучения не превышали специально установленных норм. В допустимых дозах они не опасны, как не опасны слабые радиоактивные излучения, приходящие на землю из космоса.
Около 40% всех рожденных при делении ядер 235Uнейтронов полезно поглощается другими ядрами 235U, не менее 50% неизбежно поглощается в инертном 238U, в замедлителе, теплоносителе и конструкционных материалах, расположенных в активной зове. При этом на утечку наружу может приходиться не более 10% общего числа рожденных нейтронов.
Рисунок 6.1. Схема ядерного реактора на тепловых нейтронах:
1–тепловыделяющие элементы; 2–замедлитель; 3–отражатель; 4–корпус реактора; 5–бетонная защита; 6–вход теплоносителя; 7–регулирующие стержни; 8–выход теплоносителя.
Если объем активной зоны относительно мал, то утечка нейтронов превышает «допустимую» и самоподдерживающаяся реакция деления ядер 235Uне происходит. С ростом объема активной зоны утечка нейтронов относительно уменьшается. При вполне определенном ее объеме, когда достигается вышеназванный баланс нейтронов, начинается самоподдерживающаяся цепная реакция деления ядер 235U. Этот объем называется критическим, а соответствующая ему масса топлива – критической массой. Однако реактор с загрузкой, равной критической, длительно работать не может поскольку в процессе работы топливо выгорает. Поэтому в действительности загрузка реактора в несколько десятков раз превышает критическую, но при этом для обеспечения требуемого баланса нейтронов в активную зону реактора вводят сильный поглотитель нейтронов в виде стержней из карбида бора. Такие стержни называются компенсирующими, поскольку они компенсируют дополнительную загрузку топлива или, по специальной терминологии, избыточную реактивность реактора. При работе реактора по мере выгорания топлива компенсирующие стержни постепенно выводятся из активной зоны и таким образом реактор непрерывно поддерживается в критическом состоянии. Один из стержней используют также для регулирования мощности реактора, т. е. для поддержания ее на заданном уровне.
Существующие конструкции реакторов на тепловых нейтронах во многом определяются тем, какие вещества используются в качестве замедлителя и теплоносителя.
На атомных электростанциях России в качестве замедлителей
используют обычную воду и графит, а в качестве теплоносителя обыкновенную воду. Это и определило два типа ядерных реакторов: водо-водяные реакторы, в которых вода является и замедлителем и теплоносителем и уран-графитовые реакторы, в которых замедлителем является графит, а теплоносителем вода.
К первому типу относятся реакторы марки ВВЭР. Активная зона реактора представляет собой емкость, заполненную водой с погруженными в нее сборками тепловыделяющих элементов. Реакторы этого типа выполняются по двухконтурной схеме (рисунок 6.2). В двухконтурной схеме теплоноситель и рабочее тело-пар движутся по самостоятельным контурам (соответственно первому и второму), общим элементом которых является парогенератор. Нагретый в реакторе теплоноситель поступает в парогенератор (теплообменник), отдает теплоту рабочему телу и циркуляционным насосом снова возвращается в реактор. Полученный в парогенераторе пар подается в турбину, совершает в ней работу, затем конденсируется в конденсаторе, а конденсат питательным насосом подается в парогенератор. Таким образом, радиоактивный контур теплоносителя включает не все оборудование станции, а лишь его часть.
Рисунок 6.2. Схема АЭС с реактором типа ВВЭР:
1–реактор; 2–парогенератор; 3–паровая турбина; 4– генератор; 5–конденсатор;
6–циркуляционный насос; 7– питательный насос.
Энергоблоки с реакторами ВВЭР-440 первого поколения введены в эксплуатацию в 1972 году. В 1980 году на Нововоронежской АЭС был пущен первый блок с реактором ВВЭР-1000. Эти реакторы выпускаются на заводе «Атоммаш» и имеют высокопрочный корпус, выполненный из специальных сталей путем длительной и сложной технологии упрочнения. Вода первого контура имеет давление 16,5 МПа и температуру 350 0С, что обеспечивает надежный отвод тепла из корпуса реактора. Во втором контуре давление принято 5,9 МПа, что приводит к образованию пара с температурой 289 0С. При таких сравнительно низких параметрах острого пара блок оснащается одним турбогенератором на 1000 МВт с n=1500 оборотов в минуту или двумя турбогенераторами 500 МВт при n=3000. Загрузка реактора составляет 66 тонн обогащенного урана, которого хватает на 900 дней работы.
Сегодня 6 реакторов типа ВВЭР-440 работают на Кольской и Нововоронежской АЭС, 7 реакторов типа ВВЭР-1000 работают на Балаковской, Калининской и Нововоронежской АЭС. Недавно после долгого перерыва из-за аварии на Чернобыльской АЭС пущен в работу реактор ВВЭР-1000 на Ростовской (Волгодонской) АЭС. Готовится к пуску такой же блок на Калининской АЭС. В планах строительство Балтийской, Калининской-2, Ленинградской-2 АЭС с блоками ВВЭР-1200. Ежегодно на реакторах типа ВВЭР в России вырабатывается около 40 млрд. кВт·ч электроэнергии.
Другим типом энергетических ядерных реакторов в России является уран-графитовый реактор типа РБМК с графитом в качестве замедлителя и водой в качестве теплоносителя. Этот реактор имеет канальную конструкцию. Активная зона в них состоит из графитовой кладки, в которой сделаны вертикальные каналы. В большинстве каналов размещаются тепловыделяющие кассеты. Ядерное топливо – обогащенный уран размещается в кольцевом пространстве ТВЭЛа между внутренней рассчитанной на высокое давление трубкой, по которой протекает теплоноситель, и внешней тонкостенной трубкой. В отличие от водо-водяных реакторов вода здесь кипит с образование паро-водяной смеси, которая поступает в барабан-сепаратор. В барабане влажный пар разделяется на воду и сухой пар, который затем поступает в турбину. Отработавший пар конденсируется в конденсаторе, и конденсат циркуляционным насосом подается снова в реактор. Таким образом, в этой схеме имеется только один контур (рисунок 6.3), а теплоноситель является одновременно и рабочим телом. В одноконтурных схемах все оборудование работает в радиационных условиях, что осложняет его эксплуатацию.
Достоинство одноконтурных схем по сравнению с двухконтурными состоит в их простоте и большей тепловой экономичности.
Первые энергоблоки ЭГП-6 с канальными уран-графитовыми реакторами малой мощности были установлены на Билибинской АЭС в 1974 году. Блок 600 МВт с канальным реактором работает на Белоярской АЭС. В эти же годы была разработана серия реакторов этого типа, но большой мощности достигшей 1000 МВт и даже 1500 МВт. Этим реакторам было присвоено наименование РБМК. Первый реактор серии РБМК-1000 был пущен в эксплуатацию на Ленинградской АЭС в 1973 году. Острый пар, поступающий в турбину, имеет примерно такие же параметры как и в реакторах типа ВВЭР-1000. Загрузка реактора составляет 190 тонн обогащенного урана, которого хватает на 1080 дней работы.
Рисунок 6.3. Схема блока с реактором типа РБМК:
1–реактор; 2–барабан-сепаратор; 3–паровая турбина; 4– генератор;
5–конденсатор; 6–циркуляционный насос; 7– питательный насос.
Реакторы типа РБМК-1000 общей мощностью 11000 МВт установлены на Ленинградской, Курской и Смоленской АЭС. Во времена Советского Союза в Литве на Игналинской АЭС был пущен самый мощный реактор РБМК-1500. Сегодня уран-графитовые реакторы в России ежегодно вырабатывают около 60 млрд. кВт·ч электроэнергии. На всех действующих АЭС с канальными реакторами выполнен комплекс технических и организационных мероприятий, существенно повышающих их безопасность и исключающих повторение аварии типа чернобыльской.