Система динамической стабилизации.
На глубинах морей более 200 м якорные системы стабилизации не обеспечивают требуемые допускаемые отклонения ПБС о вертикальной оси бурящейся скважины, становятся массивными, и их применение неэффективно. По этим причинам на глубинах более 200 м используют динамические системы стабилизации (динамического позицирования), которые по сравнению с якорными системами удержания имеют следующие преимущества:
Обеспечивают требуемую технологией бурения точность позицирования ПБС;
Осуществляют быстрое изменение курса БС или ППБУ в целях уменьшения бортовой и вертикальной качек;
Обеспечивают быстрый уход с точки бурения и возврат на нее ПБС.
Система динамической стабилизации представляет собой замкнутую цепь автоматического управления. Она включает:
Цепь обратной связи с датчикам, определяющими координаты продольного и поперечного перемещения по осям х, у и угол поворота φ ПБС относительно принятых неподвижных координат;
блок сравнения, который определяет отклонения Δх, Δу и Δφ действующего положения ПБС от его начального расчетного положения х0, у0, φ0 ;
пульты управления, имеющие прямые и обратные связи с двигателями и гребными винтами, рассчитывающие и подающее командного пункта на двигатели и гребные винты команды для возвращения ПБС в начальное положение.;
подруливающие устройства (двигателей и гребных винтов), обеспечивающие перемещение судна на величину Δх, Δу и Δφ и возвращение егов начальное положение.
На автоматизированном пункте управления универсальная ЭВМ по цепи обратной связи получает данные от внешних датчиков о положении ПБС в определенный момент. При этом угол поворота определяют гидрокомпасом, а координаты х, у вычисляются системой акустического измерения АМS. Эти данные имеют высокую точность, их используют в системе динамической стабилизации.
В системе динамической стабилизации имеются две ЭВМ: одна работает, а вторая в резерве. Система автоматической стабилизации включается в работу и контролируется оператором с главного пульта управления.
Осн.: 2. [ 207-209 ], 3. [ ]
Доп.: 7. [987-993]
Контрольные вопросы:
1. Какие системы удержания вы знаете?
2. Из чего состоит якорная система?
3. Из чего состоит система динамической стабилизации?.
4. Чем отличаются эти две системы удержания ПБС ?
Лекция № 8.Особенности бурения морских скважин. Подводное устьевое оборудование. Морской стояк.
Бурение скважин на море труднее и дороже, чем на суше. Обусловлено это наличием над придонным устьем скважины водного пространства, необходимостью применять специальные морские основания для размещения на них бурового оборудования и выполнения с них комплекса работ, связанных с проводкой скважины, сложными гидрологическими и метеорологическими условиями работы на акваториях (ветры и волнения, приливы, отливы и течения, туманы, морось, снег и горизонтальная видимость, ледовый режим, температура воздуха и воды) и т.д.
Ветры, волнения и течения водного пространства, находящегося над придонным устьем скважины, вызывают качку плавучей буровой установки, перемещение оборудования и инструментов по ее палубе, дрейф и снос установки в направлении ветра или течения. Качка оказывает неблагоприятное физиологическое воздействие на людей, работающих на буровой установке. Волнение моря вредно и при бурении со стационарных (неподвижных) установок, так как волны, обрушивающиеся на основание буровой, могут повредить его или полностью разрушить.
Рыхлые породы морского дна обычно сильно обводнены. При бурении в таких породах для обеспечения сохранности керна и устойчивости стенок скважин приходится использовать специальные технические средства и осуществлять технологические мероприятия, требующие дополнительных материальных затрат и удовлетворяющие жестким требованиям охраны окружающей среды от загрязнения.
Специфические гидрологические и метеорологические условия моря, ограничивают возможности и снижают эффективность применения способов, технических средств и технологий бурения, используемых на суше. Поэтому проблема повышения эффективности бурения скважин на море до сих пор является одной из самых важных в процессе вовлечения в производство минеральных ресурсов подводных месторождений.
Для бурения и последующей эксплуатации таких скважин экономически оправданным является создание дорогостоящих массивных стационарных, полустационарных и погружных конструкций оснований, которые позволяют размещать на них традиционную буровую технику и использовать хорошо отработанные на суше технологии бурения, добычи, сбора и подготовки нефти и газа к транспортированию.
Бурение разведочных скважин на море требует принципиально новых конструкций бурового оборудования и технологий, которые гарантировали бы проходку скважин с соблюдением требований безопасности, экологичности и обеспечивали бы высокое качество работ при наименьших затратах. Для создания таких технологий и техники необходимо обобщить и оценить имеющийся опыт применения современных технических средств и технологий бурения на море, научно обосновать рациональные пути их дальнейшего развития.
Условия бурения на море
На процесс бурения скважин на море влияют естественные, технические и технологические факторы (рис.16). Наибольшее влияние оказывают естественные факторы, определяющие организацию работ, конструктивное исполнение техники, ее стоимость, геологическую информативность бурения и т.п. К ним относятся гидрометеорологические, геоморфологические и горно-геологические условия.
^ Гидрометеорологические условия характеризуются волнением моря, его ледовым и температурным режимами, колебаниями уровня воды (приливы —отливы, сгоны — нагоны) и скоростью ее течения, видимостью (туманы, низкая облачность, метели, осадки).
Для большинства морей, омывающих берега России (Японское, Охотское, Берингово, Белое, Баренцево, Татарский пролив), характерна следующая средняя повторяемость высоты волн, %: до 1,25 м (3 балла) - 57; 1,25 — 2,0 м (4 балла) - 16; 2,0—3,0 м (5 баллов) - 12,7; 3,0—5,0 (6 баллов) -10. Средняя повторяемость высоты волн до 3,0 м в Балтийском, Каспийском и Черном морях составляет 93 %, 3,0 — 5,0 м - 5 %.
Для бурения на акваториях опасны отрицательные температуры воздуха, вызывающие обледенение бурового основания и оборудования и требующие больших затрат времени и труда на приведение в готовность силового оборудования после отстоя.
Ограничивает время бурения на море также снижение видимости, которое в безледовый период чаще отмечается в ночные и утренние часы.
^ Геоморфологические условия определяются очертаниями и строением берегов, топографией и почвой дна, удаленностью точек заложения скважин от суши и обустроенных портов и т.п. Для шельфов почти всех морей характерны малые уклоны дна. Изобаты с отметкой 5 м находятся на расстоянии 300—1500 м от берега, а с отметкой 200 м — 20 —60 км. Однако имеются желоба, долины, впадины, банки.
Почва дна даже на незначительных площадях неоднородна. Песок, глина, ил чередуются со скоплениями ракушки, гравия, гальки, валунов, а иногда и с выходами скальных пород в виде рифов и отдельных камней.
На первой стадии освоения морских месторождений твердых полезных ископаемых основным объектом геологического изучения являются участки в прибрежных районах с глубинами акваторий до 50 м. Это объясняется меньшей стоимостью разведки и разработки месторождений на меньших глубинах и достаточно большой площадью шельфа с глубинами до 50 м.
Рис. 16.- Факторы, влияющие на эффективность бурения скважин на море |
Требования к бурению разведочных скважин на море
Наибольшее распространение на море получили бурильные трубы нефтяного сортамента диаметром 0,127 м. Соответственно диаметр скважины не может быть меньше 0,132 м.
Установленные геологические разрезы и глубины разведываемых акваторий, геолого-методические и эксплуатационно-технические требования к бурению скважин рассмотренных целевых назначений определяют следующие их параметры:
Максимальная глубина скважины, м:
по воде/по породам .............................................. 300/300
Диаметр скважины в рыхлых отложениях, м:
максимальный ................................................... 0,325/0,351
минимальный ................................................... 0,146/0,166
Диаметр скважины в коренных породах, м: ;
максимальный ................................................. 0,131
минимальный ................................................... 0,059
Основная зона шельфа, разведываемая геологами, составляет полосу шириной от сотен метров до 25 км. Удаленность точек заложения скважин от берега при бурении с ледового припая зависит от ширины припайной полосы и для арктических морей достигает 5 км.
^ Горно-геологические условия характеризуются в основном мощностью и физико-механическими свойствами горных пород, пересекаемых скважиной. Отложения шельфа обычно представлены рыхлыми породами с включением валунов. Основными составляющими донных отложений являются илы, пески, глины и галька. В различных соотношениях могут образовываться отложения песчано-галечные, суглинки, супеси, песчано-илистые и т.д. Для шельфа дальневосточных морей породы донных отложений представлены следующими видами, %: илы — 8, пески — 40, глины — 18, галька — 16, прочие — 18. Валуны встречаются в пределах 4 —6 % в разрезе пробуренных скважин и 10—12 % скважин от общего их количества.
Рациональные способы бурения разведочных скважин на море
Рациональным является такой способ бурения скважины, который обеспечивает достаточно качественное выполнение поставленной задачи при минимальных трудовых и материальных затратах. Выбор такого способа бурения базируется на сравнительной оценке его эффективности, определяемой многими факторами, каждый из которых в зависимости от геолого-методических требований, назначения и условий бурения может иметь решающее значение. При выборе рационального способа бурения оценивать следует, прежде всего, и главным образом по фактору, отражающему целевое назначение скважины. При выявлении двух и более способов бурения, обеспечивающих пусть даже различное, но достаточное качество выполнения поставленной задачи, следует продолжить их оценку по другим факторам. Если сравниваемые способы не обеспечивают качественного решения геологической или технической задачи, ради которой осуществляется бурение, то оценивать их, например, по производительности и экономической эффективности не имеет практического смысла.
Факторы, влияющие на процесс и эффективность бурения на море, специфические (см. рис.16). Они ограничивают или вовсе исключают возможность применения некоторых способов и технических средств, признанных эффективными для бурения скважин того же назначения на суше. Исходя из этого эффективность способов бурения разведочных скважин на море предложено оценивать по четырем показателям:
геологической информативности;
эксплуатационно-технологическим возможностям;
технической эффективности;
экономической эффективности.
Геологическая информативность определяется конкретными задачами бурения разведочных скважин. При разведке месторождений полезных ископаемых геологическую информативность способов бурения оценивают по качеству отбираемого керна. Керн должен обеспечивать получение геологического разреза и фактических параметров месторождения: литологического и гранулометрического состава разбуриваемых отложений, их обводненности, границ продуктивного пласта, крупности находящегося в нем металла (при разведке россыпей), содержания полезного компонента, содержания тонкодисперсного материала и глинистых примазок (при разведке стройматериалов) и т.п. Для точного определения этих параметров необходимо предотвратить обогащение или обеднение отбираемых проб керна по каждому интервалу опробования.
Геологическую информативность способов бурения при инженерно-геологических изысканиях оценивают по возможности определения физико-механических свойств грунтов, находящихся в естественном, природном залегании. Достигают этого путем выбуривания проб грунтов (монолитов) и исследования их свойств в специальных лабораториях или определением свойств грунтов непосредственно в стволе скважины. Последний способ перспективнее, так как может обеспечить более быстрое и качественное получение результатов исследований.
Таким образом, эксплуатационно-технологические возможности способа бурения определяются качеством выполнения поставленной задачи, его технической и экономической эффективностью.
Критериями оценки технической эффективности являются: мгновенная, средняя, рейсовая, техническая, парковая, цикловая скорости бурения; производительность за смену, сезон; время выполнения отдельных операций, проходки всей скважины или отдельного ее интервала; износ оборудования, обсадных труб и инструмента; универсальность; металлоемкость; энергоемкость; мощность; транспортабельность бурового оборудования и др.
Все виды скоростей и производительность бурения определяются затратами времени на выполнение того или иного процесса или операции. При выборе способа бурения для условий моря фактор времени является одним из важнейших критериев.
Критерии экономической эффективности включают в себя показатели, характеризующие затраты в рублях. ^Важнейшие из этих критериев — стоимость 1 м бурения, стоимость сооружения всей скважины или отдельного ее интервала, в большой степени, зависящие от технической эффективности. К ним же могут быть отнесены критерии, характеризующие затраты на содержание вспомогательных плавсредств, расход различных материалов, которые быстро изнашиваются при использовании их в сложных гидрологических и агрессивных условиях моря (например, обсадных и бурильных труб, тросовой оснастки буровых и якорных лебедок и т.д.).
Ударный способ бурения
Ударный способ бурения в зависимости от способа отбора керна подразделяют на: ударный сплошным забоем, клюющий кольцевым забоем и ударно-забивной или просто забивной кольцевымзабоем.
^ Ударное бурение сплошным забоемзаключается в разрушении пород забоя долотами, удалении продуктов разрушения желонками и получении образцов пород в виде шлама. Ударное бурение сплошным забоем на море переходят только при необходимости разрушения встречающихся валунов и крепких пород.
^ Клюющий способ бурения заключается в том, что буровой снаряд, включающий жестко соединенные между собой керноприемный стакан и утяжеленную трубу, сбрасывают на забой с некоторой высоты; стакан углубляется в породу, затем снаряд поднимают на поверхность для отбора керна из стакана. Величина углубления стакана в породы в рейсе зависит от энергии удара снаряда о забой. При бурении этим способом на море достичь значений энергии удара, достаточных для погружения стакана в породы на глубину хотя бы 0,1—0,2 м, трудно, так как буровой снаряд движется в скважине, заполненной водой, и испытывает большие гидравлические сопротивления движению. Поэтому на море этот способ бурения не применяют.
Основной разновидностью ударного бурения в рыхлых породах на море является забивной способ,обеспечивающий получение образцов пород в виде керна. Отбор керна при этом осуществляется нанесением ударов по трубчатому керноприемнику, снабженному упроченным кольцевым башмаком, который выполняет роль породоразрушающего инструмента. Выход керна при отборе его из обсадной колонны забивными керноприемниками примерно такой же, как и при отборе, его вдавливаемыми грунтоносами.
Таким образом, наибольший выход керна рыхлых пород на море имеет место при вдавливающем способе бурения со скоростью погружения обсадных труб и грунтоносов в породы менее 0,02 м/с и всего на 3—4 % меньше при забивном способе со скоростью погружения обсадных труб и забивных керноприемных снарядов в породы более 0,16 м/с.
Однако ударно-забивной способ позволяет бурить разведочные скважины любых необходимых диаметров в рыхлых, крепких и перемежающейся крепости породах. Бурение вдавливанием экономически оправдано только диаметром до 0,108 м и только в рыхлых отложениях без включения гальки и валунов и поэтому не вполне отвечает обобщенным ГМТ, предъявляемым к бурению разведочных скважин.
При бурении многих видов разведочных скважин требуется внедрение в коренные породы (структурные, разведочные на россыпи, уголь и т.д.). Выбуривание керна из таких пород возможно только вращательным способом. Это единственный способ производительного бурения, обеспечивающий получение качественного керна в твердых и крепких породах. Во многих условиях вращательный способ является незаменимым при инженерно-геологических изысканиях, так как позволяет получать колонки керна мягких и твердых пород без существенного искажения их природных физико-механических свойств.
Рис.17-Последовательность выполнения операций в рейсе при погружении колонны обсадных труб в породы и отборе керна из них новыми конструкциями забивного снаряда и забивного керноприемника: а - погружение в породы обсадной колонны; б - сбрасывание керноприемного стакана на забой скважины; в - спуск в скважину ударной штанги и погружение стакана в породы; г - извлечение штанги из скважины и настройка ловителя на захват стакана; д - спуск ударной штанги с ловителем в скважину, захват стакана и подъем их на поверхность; 1 - обсадная колонна труб; 2 - забивной снаряд; 3 - стакан керноприемный; 4 - ударная штанга; 5 - заблокированный ловитель. |
^