Эксплуатация трансформаторного масла
Трансформаторное масло выполняет в трансформаторе три основные функции:
• изолирует находящиеся под напряжением узлы активной части;
• охлаждает нагревающиеся при работе узлы активной части;
• предохраняет твердую изоляцию обмоток от увлажнения.
Эксплуатационные свойства масла и его качество определяются химическим составом масла. Вновь поступившее масло должно иметь сертификат предприятия-поставщика, подтверждающий соответствие масла стандарту. Для масла, прибывшего вместе с трансформатором, соответствие стандарту подтверждается записью в паспорте трансформатора.
При каждом осмотре трансформаторов проверяется температура верхних слоев масла, контролируемая по термометрам или термосигнализаторам. Эта температура не должна превышать 95°С. В противном случае нагрузка трансформатора должна быть снижена.
Состояние масла оценивается по результатам испытаний, которые в зависимости от объема делятся на три вида.
1. Испытания на электрическую прочность. Здесь определяется пробивное напряжение масла Uпр, визуально (качественно) определяется содержание механических примесей и влаги.
Электрическая прочность — одна из основных характеристик диэлектрических свойств масла. Испытания масла на электрическую прочность проводятся в стандартном маслопробойнике (рис. 9.4), представляющем собой фарфоровый сосуд 1, в который вмонтированы два плоских электрода 2.
Рис. 9.4. Стандартный маслопробойник
Масло заливается в маслопробойник и отстаивается в течение 20 минут для удаления из него воздушных включений. Напряжение на электродах маслопробойника плавно повышается до пробоя масла.
С интервалом 10 мин. выполняются шесть пробоев. Первый пробой не учитывается, а среднее арифметическое пяти других пробоев принимается за пробивное напряжение масла.
Снижение пробивного напряжения свидетельствует об увлажнении масла, наличии в нем растворенного воздуха, загрязнении масла волокнами от твердой изоляции и другими примесями.
2. Сокращенный анализ масла. Здесь дополнительно к п.1 определяются температура вспышки масла и кислотное число.
Температура вспышки паров масла в закрытом тигле характеризует фракционный состав масла и служит для обнаружения в трансформаторе процессов разложения масла.
Кислотное число — это количество едкого кали (КОН), выраженное в мг и необходимое для нейтрализации кислот, содержащихся в 1 г масла. Старение масла сопровождается увеличением в нем содержания кислотных соединений, поэтому кислотное число характеризует степень старения масла.
3. Полный анализ масла. Здесь дополнительно к п.2 определяются, количественное определение влаги и механических примесей, тангенс угла диэлектрических потерь tgd, содержание водорастворимых кислот и щелочей, содержание антиокислительных присадок, температура застывания, газосодержание и другие показатели.
Величина диэлектрическиех потерь (tgd) характеризует степень загрязнения и старения масла.
Влагосодержание тщательно контролируется при эксплуатации трансформаторного масла. Ухудшение этого показателя характеризует нарушение герметичности трансформатора или его работу в недопустимом нагрузочном режиме. В последнем случае происходит интенсивное старение целлюлозной изоляции и выделение ею влаги под воздействием повышенной температуры. Кроме того, масло содержит химически связанную воду, которая может выделяться в виде свободной воды в результате старения масла и под воздействием повышенной температуры.
Увеличение газосодержания (кислорода воздуха) приводит к интенсификации окислительных процессов в масле. Этот показатель косвенно характеризует и герметичность трансформатора.
Температура застывания актуальна для масла, эксплуатируемого
в районах крайнего севера.
Различают масло свежее, регенерированное (восстановленное)
и эксплуатационное. Характеристики свежего и регенерированного масла практически не отличаются. Для эксплуатационного масла установлены нормально допустимые и предельно допустимые показатели качества.
Нормально допустимые показатели гарантируют нормальную работу оборудования. При показателях масла, приближающихся к предельно допустимым, необходимо принять меры по восстановлению эксплуатационных свойств масла или провести его замену.
В табл. 9.4 приведены показатели трансформаторного масла в соответствии с сокращенным анализом.
Для определения показателей масла берется его проба в сухую, чистую, стеклянную емкость вместимостью около 1 л с притертой стеклянной пробкой. Масло берется из нижних слоев через специальный сливной кран. Предварительно сливается некоторое количество масла (2…3 л) для ополаскивания стеклянной емкости. На емкости должна быть этикетка с указанием оборудования, из которого взята проба, даты, причины отбора пробы и фамилии лица, отобравшего пробу масла. Периодичность отбора проб масла соответствует периодичности текущих ремонтов трансформатора.
Таблица 9.4
Показатель масла | Оборудо-вание, Uном, кВ | Свежее масло | Регенерир. масло | Эксплуатац. масло | |
норм. доп. | пред. доп. | ||||
Uпр, кВ | до 35 до 150 | - | |||
кисл.число, мг КОН/г | до 220 | 0,02 | 0,05 | 0,1 | 0,25 |
т-ра вспышки, °С | до 220 | * |
* — уменьшение не более чем на 5°С по сравнению с предыдущим анализом.
Непосредственный контакт масла с атмосферным воздухом приводит к насыщению масла влагой и кислородом. В результате уменьшается электрическая прочность масла, ускоряются окислительные процессы в масле (масло стареет).
Для замедления процессов увлажнения и старения масла в него добавляют антиокислительные присадки, а в конструкции трансформатора предусматривают специальные устройства: термосифонные фильтры, воздухоосушители, пленочную и азотную защиты.
Антиокислительные присадки способствуют поддержанию требуемого качества масла длительное время, а также защищают другие изоляционные материалы трансформатора.Срок службы масла с такими присадками увеличивается в 2…3 раза. Стоимость присадок относительно невелика. Добавку присадок выполняют раз в 4…5 лет. Примером антиокислительной присадки служит технический пирамидон в количестве 3% от массы масла [10].
Термосифонный фильтр предназначен для поглощения влаги и продуктов окисления и старения масла в процессе эксплуатации. Общий вид термосифонного фильтра приведен на рис. 9.5,а. Корпус фильтра 1 заполнен адсорбентом 2 (силикагелем или другим веществом), поглощающим влагу и продукты окисления масла. С помощью патрубков 5 фильтр присоединен к верхней и нижней частям бака трансформатора. Масло через фильтр циркулирует за счет разности плотностей нагретого (в верхних слоях) и холодного (в нижних слоях) масла.
Количество адсорбента в фильтре составляет около 1% массы масла. Насыщенный влагой адсорбент удаляется через бункер 4, а через бункер 3 загружается свежий адсорбент. Использованный адсорбент регенерируется нагреванием до температуры 400…500°С.
Насыщение адсорбента влагой контролируется по изменению его окраски. В частности, добавка к силикагелю хлористого кобальта обуславливает его голубую окраску. Появление розовой окраски является признаком насыщения силикагеля влагой и продуктами старения масла.
Трансформаторы мощностью 1000 кВ.А и более должны эксплуатироваться с постоянно включенными термосифонными фильтрами.
Рис. 9.5. Термосифонный фильтр (а), принципиальные схемы пленочной (б)
и азотной (в) защит масла
Масло очень гигроскопично, и если расширитель непосредственно связан с атмосферой, то влага из воздуха поглощается маслом, снижая его изоляционные свойства. Для предотвращения этого расширитель связывают с окружающей средой через воздухоосушитель (позиция 3 на рис. 9.5,б), заполненный силикагелем.
Принцип пленочной защиты (рис. 9.5,б) заключается в герметизации масла за счет установки внутри расширителя 2 эластичной емкости 1, предназначенной для компенсации температурного изменения объема масла. Эта емкость плотно прилегает к внутренней поверхности расширителя и масла, обеспечивая герметизацию последнего от окружающей среды. Внутренняя полость эластичной емкости соединена с окружающей средой через воздухоосушитель 3, препятствующий конденсации влаги внутри емкости. Патрубок 4 соединяет расширитель с баком трансформатора.
Азотная защита (рис. 9.5,в) заключается в заполнении надмасленного пространства 1 герметичного расширителя сухим азотом. Компенсация температурных изменений объема масла осуществляется за счет связи надмасляного пространства с мягким резервуаром 2.
Несмотря на все применяемые защиты, в процессе длительной эксплуатации масло увлажняется и стареет. При приближении показателей масла к предельно допустимым его подвергают регенерации (восстановлению). На специальных установках масло центрифугируют, фильтруют, сушат, дегазируют.
При центрифугировании из масла удаляются твердые механические примеси и частично влага, имеющие большую плотность, чем масло. При фильтровании масло продавливается через пористую среду (картон, бумагу), в которой задерживаются нерастворимые примеси и частично влага. Глубокая сушка масла выполняется распылением в вакууме или на цеолитовых установках, в которых масло фильтруется через слой молекулярных сит — цеолитов, задерживающих молекулы воды, но пропускающих молекулы масла. Растворенный в масле кислород удаляют в специальных дегазационных установках.
Стоимость регенерированного масла при полностью восстановленных эксплуатационных качествах не превышает 50-60% от стоимости нового масла.
Сложности эксплуатации трансформаторного масла: защита от окружающей среды, периодический контроль состояния, испытания, регенерация — обусловили широкое использование в распределительных сетях 6…35 кВ трансформаторов герметичного исполнения (ТМГ), изготавливаемых с номинальной мощностью до 1600 кВ.А. Эти трансформаторы полностью заполнены маслом и не имеют расширителя. Температурные изменения объема масла воспринимаются гофрированным баком.
В трансформаторах ТМГ контакт масла с окружающей средой полностью отсутствует, что исключает его увлажнение, окисление
и шламообразование. Масло практически не меняет своих свойств
в течение всего срока службы трансформатора. Поэтому при эксплуатации таких трансформаторов отсутствует необходимость периодического взятия проб и испытаний масла.
В настоящее время альтернативой трансформаторному маслу являются жидкие диэлектрики Midel 7131, Софексил ТСЖ и другие. Экологически чистый диэлектрик Midel 7131 (пробивное напряжение 55 кВ, кислотное число 0,02 мг КОН/г, температура вспышки 257°С) применяется там, где требуется высокая пожаробезопасность — в жилых, служебных, некоторых производственных помещениях.
Для улучшения свойств трансформаторного масла российский производитель трансформаторов ОАО «Уралэлектротяжмаш» использует смесь из минерального трансформаторного масла и Midel 7131. Этой фирмой изготавливаются трансформаторы, полностью заполненные Midel 7131.
Экологически чистый диэлектрик Софексил ТСЖ (пробивное напряжение 35 кВ, температура вспышки 300°С) является пожаробезопасным. В условиях сурового российского климата явным преимуществом Софексил ТСЖ является низкая температура застывания -75oC. Температура застывания стандартного трансформаторного масла -45oC. Недостаточно низкая температура застывания масла может привести к перегреву и повреждению трансформатора при его запуске в суровых климатических условиях (Сибирь, районы крайнего Севера).
Трансформаторы с экологически чистыми жидкими диэлектриками дороже традиционных масляных трансформаторов, но дешевле сухих трансформаторов и успешно конкурируют с последними в части пожарной безопасности в распределительных сетях 6…35 кВ.
9.7. Хроматографический анализ газов,
растворенных в трансформаторном масле
Необходимость контроля за изменением состава масла в процессе эксплуатации трансформаторов ставит вопрос о выборе такого аналитического метода, который смог бы обеспечить надежное качественное и количественное определение содержащихся в трансформаторном масле соединений. В наибольшей степени этим требованиям отвечает хроматография, представляющая собой комплексный метод, объединивший стадию разделения сложных смесей на отдельные компоненты и стадию их количественного определения. По результатам этих анализов проводится оценка состояния маслонаполненного оборудования.
Хроматографический анализ газов, растворенных в масле, позволяет выявить дефекты трансформатора на ранней стадии их развития, предполагаемый характер дефекта и степень имеющегося повреждения. Состояние трансформатора оценивается сопоставлением полученных при анализе количественных данных с граничными значениями концентрации газов и по скорости роста концентрации газов в масле. Этот анализ для трансформаторов напряжением 110 кВ и выше должен осуществляться не реже 1 раза в 6 месяцев [1, 14].
Основными газами, характеризующими определенные виды дефектов в трансформаторе, являются: водород Н2, ацетилен С2Н2, этан С2Н6, метан СН4, этилен С2Н4, окись СО и двуокись СО2 углерода.
Водород характеризует дефекты электрического характера (частичные, искровые и дуговые разряды в масле); ацетилен — перегрев активных элементов; этан — термический нагрев масла и твердой изоляции обмоток в диапазоне температур до 300°С; этилен — высокотемпературный нагрев масла и твердой изоляции обмоток выше 300°С; окись и двуокись углерода — перегрев и разряды в твердой изоляции обмоток.
С помощью анализа количества и соотношения этих газов в трансформаторном масле можно обнаружить следующие дефекты в трансформаторе.
1. Перегревы токоведущих частей и элементов конструкции магнитопровода. Основные газы: этилен или ацетилен. Характерные газы: водород, метан и этан. Если дефектом затронута твердая изоляция, заметно возрастают концентрации окиси и двуокиси водорода.
Перегрев токоведущих частей может определяться: выгоранием контактов переключающих устройств; ослаблением крепления электростатического экрана; ослаблением и нагревом контактных соединений отводов обмотки низкого напряжения или шпильки проходного изолятора ввода; лопнувшей пайкой элементов обмотки; замыканием проводников обмотки и другими дефектами.
Перегрев элементов конструкции магнитопровода может определяться: неудовлетворительной изоляцией листов электротехнической стали; нарушением изоляции стяжных шпилек, ярмовых балок с образованием короткозамкнутого контура; общим нагревом и недопустимыми местными нагревами от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах; неправильным заземлением магнитопровода и другими дефектами.
2. Дефекты твердой изоляции. Эти дефекты могут быть вызваны перегревом изоляции от токоведущих частей и электрическими разрядами в изоляции. При перегреве изоляции от токоведущих частей основными газами являются окись и двуокись углерода, их отношение СО2/CO, как правило, больше 13; характерными газами с малым содержанием являются водород, метан, этилен и этан; ацетилен, как правило, отсутствует.
При разрядах в твердой изоляции основными газами являются ацетилен и водород, а характерными газами любого содержания — метан и этилен. При этом отношение СО2/CO, как правило, меньше 5.
3. Электрические разряды в масле. Это частичные, искровые и дуговые разряды. При частичных разрядах основным газом является водород;характерными газами с малым содержанием — метан иэтилен. При искровых и дуговых разрядах основными газами являются водород и ацетилен;характерными газами с любым содержанием — метаниэтилен.
После выявления дефекта и его подтверждения не менее чем двумя-тремя последующими измерениями следует планировать вывод трансформатора из работы прежде всего с дефектами группы 2. Чем раньше выведен из работы трансформатор с развивающимся дефектом, тем меньше риск его аварийного повреждения и объем ремонтных работ.
Если по результатам диагностики трансформатор должен быть выведен из работы, но по каким-то объективным причинам это невозможно осуществить, его следует оставить на контроле с учащенным отбором проб масла и хромотографическим анализом газов.
Хроматографический анализ газов, растворенных в масле, позволяет выявлять не только развивающиеся дефекты в трансформаторе, но и общее состояние изоляции его обмоток. Объективным показателем, позволяющим оценить степень износа изоляции обмоток трансформатора, является степень ее полимеризации, снижение которой прямо характеризует глубину физико-химического разрушения (деструкции) изоляции в процессе эксплуатации. Деструкции целлюлозной изоляции сопутствует рост содержания в трансформатором масле окиси и двуокиси углерода и образование фурановых производных. В частности, наличие суммарной концентрации СО и СО2 более 1% может свидетельствовать о деградации целлюлозной изоляции. Образование фурановых производных является прямым следствием старения бумажной изоляции.
Метод жидкостной хроматографии позволяет определять и контролировать требуемое содержание в трансформаторном масле антиокислительных присадок, защищающих масло и другие изоляционные материалы трансформатора от старения.
Ремонт трансформаторов
Трансформаторы являются наиболее сложным оборудованием систем электроснабжения. Ремонт трансформатора, связанный с его разгерметизацией, выемкой и ремонтом активной части, требует высокой квалификации ремонтного персонала, больших материальных и временных затрат.
Вывод трансформатора в ремонт через определенный календарный промежуток времени не может считаться достаточно оправданным, поскольку в плановый ремонт может быть выведен вполне работоспособный трансформатор. Поэтому текущие и капитальные ремонты трансформаторов систем электроснабжения проводят в соответствии с их действительным техническим состоянием (система РТС).
Для оценки действительного состояния трансформатора при его техническом обслуживании периодически проводятся профилактические проверки, измерения, испытания, диагностирование. При обнаружении явных или прогнозировании развивающихся дефектов, которые могут привести к отказу трансформатора планируется вывод его в ремонт.
Предварительно проводится ряд организационно-технических мероприятий, обеспечивающих четкое выполнение ремонтных работ: подготовка помещения (площадки), грузоподъемных механизмов, оборудования, инструментов, материалов, запасных частей. Кроме того, составляются ведомость объема работ и смета, которые являются исходными документами для определения трудовых и денежных затрат, сроков ремонта, потребности в материалах.
Любой ремонт трансформатора, связанный с разгерметизацией
и выемкой активной части относится к капитальному. В зависиости от состояния активной части различают:
• капитальный ремонт без замены обмоток;
• капитальный ремонт с частичной или полной заменой обмоток, но без ремонта магнитной системы;
• капитальный ремонт с заменой обмоток и частичным или полным ремонтом магнитной системы.
Ремонт трансформаторов мощностью до 6300 кВ.А выполняется, как правило, на специализированных ремонтных предприятиях. Ремонт трансформаторов большей мощности, у которых затраты на транспортировку могут превосходить стоимость ремонта, выполняется непосредственно на подстанциях. В этом случае персонал специализированного ремонтного предприятия выезжает к месту установки трансформатора.
По завершению ремонта активная часть трансформатора промывается сухим трансформаторным маслом. Для старого электрооборудования со сроком службы более 25 лет следует использовать интенсивную промывку активной части, добавляя в промывочное масло специальные присадки, обладающие повышенной растворяющей способностью. Это позволяет интенсифицировать процесс выделения из изоляции и активной части трансформатора воды, механических примесей, продуктов старения масла и твердых изоляционных материалов, что положительно сказывается на характеристиках изоляции.
Твердая изоляция обмоток трансформатора обладает гигроскопичностью. В период выполнения ремонтных работ на открытой активной части изоляция обмоток впитывает влагу из окружающей среды. Поэтому по окончании ремонта возникает вопрос о необходимости сушки изоляции обмоток трансформатора.
Трансформаторы, у которых при ремонте выполнялась полная или частичная замена обмоток, подлежат обязательной сушке. Трансформаторы, прошедшие ремонт без замены обмоток, могут быть включены в работу без сушки изоляции при условиях, что:
• характеристики изоляции не выходят за пределы нормированных значений;
• продолжительность пребывания активной части на открытом воздухе Тоткр при определенной его влажности не превышает значений, приведенных в табл. 4.1.
Сушка изоляции существляется ее нагреванием в вакуумных шкафах, сухим горячим воздухом в специальных камерах, в собственном баке (без масла).
Вакуум ускоряет испарение влаги из изоляции. Предварительно нагретую активную часть трансформатора помещают в вакуумный шкаф. Выдерживая определенный режим температуры и вакуума, проводят сушку изоляции. Этот способ сушки достаточно сложный, требует значительных затрат и применяется, как правило, на заводах-изготовителях трансформаторов и крупных ремонтных предприятиях.
При сушке изоляции сухим нагретым воздухом активную часть трансформатора помещают в теплоизолированную и защищенную изнутри от возгорания камеру. В нижнюю часть камеры с помощью воздуходувки подается нагретый сухой воздух, удаляемый через вытяжное отверстие в верхней части камеры.
Одним из наиболее распространенных в эксплуатации является способ сушки изоляции в собственном баке без масла с применением вакуума, допустимого для конструкции бака. На поверхности бака 1 (рис. 9.6) размещается намагничивающая обмотка 2, подключаемая к источнику переменного напряжения ~U. Между баком и обмоткой прокладывается слой теплоизоляции (асбест или стеклоткань).
При протекании по обмотке переменного тока в стальных конструкциях трансформатора возникает переменный магнитный поток. Токи, индуктируемые этим потоком, нагревают трансформатор. Влага из изоляции обмоток испаряется.
Рис. 9.6. Принципиальная схема сушки изоляции трансформатора
В отверстие в крышке бака трансформатора вставляется вытяжная труба 3, через которую пары влаги вытягиваются в приемник конденсата 5 вакуум-насосом 4. Этот насос создает внутри бака разряжение, допустимое для данной конструкции бака.
В [9, 10] приводятся аналитические выражения для расчета параметров намагничивающей обмотки.
При всех способах сушки с помощью термодатчиков контролируется температура активной части трансформатора, которая должна быть в пределах 95…105°С.
В процессе сушки периодически измеряется сопротивление изоляции. При проведении измерений питание намагничивающей обмотки отключается. Сушка заканчивается, если сопротивление изоляции на протяжении 6 часов остается неизменным.
Все работы, выполненные при капитальном ремонте трансформатора, принимаются по акту, к которому прилагается техническая документация по ремонту. Акты со всеми приложениями хранятся в паспорте трансформатора.