Небесная механика Ньютона и законы движения небесных тел
Наблюдения и измерения Тихо Браге позволили его ученику, немецкому ученому Иоганну Кеплеру, сделать следующий шаг в развитии астрономии.
Геоцентрическая система мира Птолемея и гелиоцентрическая система Коперника
Рассчитывая орбиту Марса, Кеплер обнаружил, что она представляет собой не окружность, как считал Коперник и другие ученые, а эллипс. Поначалу он не распространял этот вывод на другие планеты, но позже понял, что не только Марс, а все планеты имеют эллипсоидную орбиту Таким образом был открыт первый закон движения планет Кеплера. В современной формулировке он звучит так: каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.
Второй закон движения планет явился логичным следствием первого. Еще до формулировки первого закона, наблюдая за перемещением Марса, Кеплер заметил, что планета движется тем медленнее, чем дальше она находится от Солнца. Эллиптическая форма орбиты полностью объясняет эту особенность движения. За равные промежутки времени прямая, соединяющая планету с Солнцем, описывает равные площади – это второй закон Кеплера.
Второй закон объясняет изменение скорости движения планеты, но не дает никаких расчетов. Формула, позволяющая вычислить, с какой скоростью вращаются планеты и какое время занимает их путь вокруг Солнца, заключается в третьем законе Кеплера.
Исследования Кеплера поставили точку в споре между системами мира Птолемея и Коперника. Он убедительно доказал, что в центре нашей системы находится Солнце, а не Земля. После Кеплера в научном мире больше не предпринимались попытки реанимировать геоцентрическую систему.
Точность трех законов движения планет, открытых Кеплером, подтвердили многочисленные астрономические наблюдения. Тем не менее основания и причины этих законов оставались неясными до тех пор, пока в конце XVII в. не проявился гений Ньютона.
Всем известна история о том, как Ньютон открыл закон всемирного тяготения: ему на голову упало яблоко, и Ньютон понял, что яблоко притянула к себе Земля. В расширенной версии этой легенды присутствует еще и Луна, на которую смотрел ученый, сидя под яблоней.
После падения яблока Ньютон осознал, что сила, заставившая яблоко упасть, и сила, удерживающая Луну на земной орбите, имеет одну и ту же природу.
На самом деле, конечно, все было далеко не так просто До открытия знаменитого закона Ньютон много лет посвятил изучению механики, закономерностей движения и взаимодействия между телами. Он был не первым, кто предположил существование сил тяготения. Об этом говорил еще Галилео Галилей, но он считал, что притяжение к Земле действует только на нашей планете и простирается всего лишь до Луны. Кеплер, открывший законы движения планет, был уверен, что они работают исключительно в космосе и не имеют отношения к земной физике. Ньютон же смог объединить эти два подхода – он был первым, кто осознал, что физические законы, в первую очередь закон всемирного тяготения, универсальны и применимы ко всем материальным телам.
Суть закона всемирного тяготения сводится к тому, что между абсолютно всеми телами во Вселенной существует притяжение. Сила притяжения зависит от двух главных величин – массы тел и расстояния между ними. Чем тяжелее тело, тем сильнее оно притягивает к себе более легкие тела. Земля притягивает Луну и удерживает ее на своей орбите. Луна тоже оказывает на нашу планету определенное воздействие (оно вызывает приливы), но сила притяжения Земли, за счет большей массы, значительнее.
Кроме закона всемирного тяготения, Ньютон сформулировал три закона движения. Первый из них называют законом инерции. Он гласит: если на тело не воздействует сила, оно будет оставаться в состоянии покоя или равномерного прямолинейного движения. Второй закон вводит понятие силы и ускорения, и эти две величины, как доказал Ньютон, зависят от массы тела. Чем больше масса, тем меньшим будет ускорение при определенной приложенной силе. Третий закон Ньютона описывает взаимодействие двух материальных объектов. Самая простая его формулировка гласит: действие равно противодействию.
Открытия, совершенные Исааком Ньютоном, и выведенные им формулы дали астрономии мощный инструмент, позволивший продвинуть эту науку далеко вперед. Многие явления, не имевшие раньше объяснений, раскрыли свою природу. Стало понятно, почему планеты вращаются вокруг Солнца, а спутники вокруг планет, не улетая в открытый космос: их удерживает сила притяжения. Скорость движения планет остается равномерной благодаря закону инерции. Округлая форма небесных тел также получила свое объяснение: она приобретается благодаря гравитации, притяжению к более массивному центру.
1.4. Кометы, планеты, спутники: открытия XVIII–XIX вв.
В начале XVIII в. астрономы стали выдвигать первые гипотезы происхождения Земли, Солнечной системы и вселенной. Одна из них принадлежала английскому ученому Уильяму Уинстону. Он предполагал, что наша планета раньше была кометой, которая после столкновения с другой кометой изменила форму и направление движения. Натуралист и естествоиспытатель из Франции Жан Бюффон выдвинул следующую гипотезу образования планет: миллионы лет назад огромная комета столкнулась с Солнцем, в результате чего часть вещества светила была выброшена в космос. Из этого вещества образовались все планеты нашей системы.
Большая часть остальных теорий также были катастрофическими, лишь философ Иммануил Кант и физик Пьер-Симон Лаплас считали, что Вселенная развивалась эволюционно, без глобальных катастроф. Звезды, в том числе и наше Солнце, и планеты появились благодаря физическим законам из скоплений материи. Томас Райт, астроном из Великобритании, выдвинул революционную гипотезу: Вселенная представляет собой огромное количество скоплений звезд, «звездных островов», как он их назвал. «Острова» находятся в постоянном движении, вращаясь вокруг нескольких «божественных центров».
В 1718 г. Эдмунд Галлей опроверг многовековую убежденность астрономов в неподвижности звезд. Изучая античные каталоги небесных объектов, он сравнил их с современными и понял, что некоторые звезды изменили свое положение. Это стало первым шагом в изучении собственного движения звезд.
Имя Галлея в первую очередь связано с известной кометой. Астроном посвятил много лет ее изучению и смог предсказать следующее появление «хвостатой» в зоне видимости нашей планеты.
Галлей сделал потрясающее открытие: кометы движутся не беспорядочно, а по заданным эллиптическим орбитам.
Так же как другие небесные тела, кометы подчиняются закономерностям. Еще одно достижение ученого – более точное, чем это было прежде, определение расстояния от Земли до Солнца. Для расчетов он использовал момент прохождения Венеры по диску светила. Черную точку на диске он принял за вершину треугольника, а расстояние между двумя точками наблюдения на Земле – за его основание.
Француз Шарль Мессье составил самый полный для своего времени каталог звездного неба, где были учтены не только звезды, но также туманности, звездные скопления и далекие галактики. Он был известным «ловцом комет», наблюдал за свою жизнь 44 кометы; каталог он начал составлять для того, чтобы не путать свой излюбленный объект поисков с другими небесными образованиями. Он плохо представлял разницу между обнаруженными объектами и называл их туманностями. Позже их природа была определена другими астрономами.
К концу XVIII в. в распоряжении астрономов были довольно мощные телескопы – рефлекторы (с зеркалом в качестве элемента, собирающего свет) и рефракторы (с системой линз), а также хорошая теоретическая база. Небесная механика Ньютона была развита другими учеными, это позволило вести довольно точные расчеты движения планет, звезд и других космических тел.
Самый большой для своего времени телескоп построил Уильям Гершель, диаметры его зеркал были больше метра. При помощи этого грандиозного прибора Гершель расширил границы Солнечной системы, открыв седьмую по счету планету, Уран. Кроме того, ему принадлежит честь обнаружения спутников Урана и нескольких новых спутников Сатурна. Мощный телескоп позволил Гершелю обнаружить более двух тысяч новых туманностей, увидеть, что непонятные полосы на Юпитере – это облака, а снежная шапка Марса меняет размер в течение сезона.
Занимаясь исследованием солнечного спектра, астроном сделал случайное открытие – обнаружил инфракрасное излучение. Началось все с того, что он хотел найти цветной фильтр, при помощи которого можно было бы смотреть на Солнце без вреда для глаз. Он заметил, что под воздействием солнечного света фильтры нагреваются, причем с разной интенсивностью. Тогда он при помощи призмы разложил свет на спектр и термометром измерил температуру каждого цвета. Выяснилось, что самый горячий участок располагается за границей красного цвета. Значит, лучи нашего светила – это не просто свет, а еще и тепловое излучение, которое не видно невооруженным глазом. Этот вывод Гершеля заложил основы изучения инфракрасных лучей, что впоследствии позволило совершить многие астрономические открытия.
XIX в. был временем бурного развития астрономической науки. Для наблюдений использовалась фотография, фотометрия (раздел оптики, занимающийся измерением поля излучения), спектральный анализ, позволяющий определить химический состав небесных объектов, и многие другие передовые методы. Благодаря спектральному анализу ученые доказали, что все объекты Солнечной системы – Солнце, планеты, спутники – состоят из схожего вещества, а значит, имеют единую природу.
Многие астрономы были уверены, что открыты далеко не все планеты Солнечной системы, их гораздо больше семи. Долгое время считалось, что между Марсом и Юпитером есть еще одна планета; впоследствии выяснилось, что это пояс астероидов. Новая планета, Нептун, все же была обнаружена. Это произошло в 1846 г. Последняя из планет нашей системы, Плутон, попала в объективы телескопов уже в XX в., в 1930 г.
В 1842 г. Кристиан Доплер открыл физический эффект, позже названный его именем. Он вывел следующую закономерность: чем ближе к наблюдателю источник света, тем выше его наблюдаемая частота. Этот эффект позволил определять, в каком направлении движутся небесные объекты, а также рассчитывать их скорость и координаты.
Разделение Земли на часовые пояса, с учетом местного солнечного времени и вращения планеты вокруг оси, также произошло в XIX в. Это было одно из событий, связывающих космические законы с закономерностями жизни на Земле.