Долгая жизнь и проблема роста населения
Люди обычно желают долгой и здоровой жизни, однако перспектива резкого успеха в этом направлении вызывает тревогу. Не повредит ли большая продолжительность жизни качеству жизни? Как перспектива долгой жизни повлияет на наши близкие сегодняшние проблемы? Хотя большинство влияний нельзя предсказать, некоторые всё же можно.
Например, по мере того, как машины ремонта клеток продлят жизнь, население увеличится. При прочих равных условиях большее количество людей будет означать большую тесноту, загрязнение и дефицит – но прочие условия не будут равны: сам прогресс в автоматизированной разработке и нанотехнология, которая даст машины ремонта клеток, также помогут нам излечить Землю, защитить её и жить на ней более легко. Мы будем способны производить наши предметы необходимости и роскоши, не загрязняя воздух, землю и воду. Мы будем способны получать ресурсы и производить вещи, не портя ландшафт шахтами или загромождая его фабриками. С ассемблерами, эффективно производящими долговечные продукты, мы будем производить вещи большей ценности с меньшими отходами. Больше людей будут способны жить на Земле, однако причиняя ей и друг другу меньше вреда, если мы как-то сможем использовать наши новые способности на благие цели.
Если кто-то считает ночное небо черной стеной и ожидает, что гонка технологий вежливо нажмёт на тормоза, для него было бы естественно бояться, что долгоживущие люди будут бременем в "бедном, переполненном мире наших детей. "Это опасение происходит из иллюзии, что жизнь является игрой с нулевой суммой, что большее количество людей всегда означает нарезку маленького пирога на меньшие кусочки. Но когда будем способны восстанавливать клетки, мы будем также способны строить самовоспроизводящиеся ассемблеры и превосходные космические корабли. Наши «бедные» потомки будут делить мир размером с Солнечную систему, с материей, энергией и потенциальным жизненным пространством таким огромным, что вся наша планета кажется пылинкой.
Это откроет достаточно пространства для эры роста и процветания, далеко за пределами всего, что когда-либо было прежде. Однако сама солнечная система конечна, а звезды далеки. На Земле, даже самая чистая индустрия, построенная на ассемблерах, будет выделять много избыточного тепла. Беспокойство относительно населения и ресурсов остаётся важным, поскольку экспоненциальный рост репликаторов (таких как людей) может в конце концов обогнать любую конечную базу ресурсов.
Но значит ли это, что мы должны жертвовать жизнями людей, чтобы задержать конец? Отдельные люди могут стать добровольцами, но они этим сделают мало добра. По правде говоря, продление жизни будет иметь небольшое влияние на фундаментальную проблему: экспоненциальный рост останется экспоненциальным, умирают ли люди молодыми или живут неопределенно долго. Мученик, умирая рано, мог бы задержать кризис на доли секунды, но в меньшей степени преданный делу человек мог бы помочь больше, присоединившись к движению долгоживущих людей, работающих над решением этой долгосрочной проблемы. В конце концов многие люди не замечали пределов росту на Земле. Кто кроме тех, кто будет жить долго, подготовится к более жёстким, но более отдалённым пределам росту в мире за пределами Земли? Те, кто озабочен долгосрочными пределами будет служить человечеству наилучшим образом, оставаясь живым, чтобы сохранять живой свою озабоченность.
Долгая жизнь также поднимает вопрос об угрозе культурного застоя. Если это было бы неизбежной проблемой долгой жизни, неясно, что можно было делать с ней сделать – расстрелять из пулемётов всех стариков в целях сохранения хороших нравов? К счастью, два фактора несколько уменьшат проблему. Во-первых, в мире с открытой границей молодёжь сможет улетать, строить новые миры, проверять новые идеи, а затем или убеждать своих старших измениться или оставлять их позади. Во-вторых, люди, старые годами, будут молоды телом и мозгом. Старение замедляет и обучение и мыль, как оно замедляет остальные физические процессы; омоложение ускорит их вновь. Поскольку молодые мускулы и сухожилия делают молодые тела более гибкими, возможно, молодые мозговые ткани будут поддерживать умы несколько более гибкими, даже умудрённые многими годами.
Последствия предвидения
Долгая жизнь не будет самой большой из проблем будущего. Она даже могла бы помогать их решать.
Рассмотрите её влияние на готовность народов вступать в войны. Старение и смерть сделало резню в бою более приемлемым: как Гомер сказал устами Сарпедона, героя Трои: ""O, мой друг, если мы, покинув эту войну, могли бы избежать старости и смерти, я не должен был бы биться здесь в авангарде; но теперь, так как всё что есть – это разные способы смерти, нависшие над нами, и ни один человек не может надеяться их избегнуть, давай поспешим и отдадим славу другим людям, или выиграем её для нас самих."
Однако, если надежда избежать старения и смерти отвращает людей от сражения, будет ли это хорошо? Это могло бы препятствовать маленьким войнам, которые могли бы перерасти в ядерное тотальное уничтожение. Но так же, это могло бы ослабить наше решение защищать себя от пожизненного притеснения – если у нас не будет нужды считать, сколько еще нашей жизни мы должны защитить. Поможет нежелание людей умирать за власть своих правителей.
Ожидания всегда формируют действия. И наши учреждения, и личные планы отражают наше ожидание того, что все ныне живущие взрослые умрут в ближайшие десятилетия. Посмотрите, как эта вера воспламеняет стремление приобретать и игнорировать будущее в преследовании мгновенного удовольствия. Посмотрите, как это ослепляет нас относительно будущего, и закрывает от нашего взора долгосрочные выгоды от сотрудничества. Эрик Фромм пишет: ""Если индивидуум жил бы пятьсот или тысячу лет, это столкновение (его интересов с интересами общества) могли бы существенно уменьшиться. Он далее мог бы жить и с радостью пожинать то, что посеял в печали; страдание одного исторического периода, которые принесёт плоды в следующем, могло бы принести плод и для него тоже." Будет ли большинство людей жить для настоящего – это не вопрос: вопрос в том, может ли быть значительное изменение к лучшему?
Ожидание долгой жизни в лучшем будущем вполне может сделать некоторые политические болезни менее беспощадными. Человеческие конфликты слишком глубоки и сильны, чтобы быть искорененными любым простым изменением, однако перспектива обширного богатства завтра может по крайней мере уменьшить стремление бороться за крохи сегодня. Проблема конфликта большая, и нам нужна вся помощь, которую мы можем получить.
Перспектива личного старения и смерти всегда делала мысли о будущем менее приятными. Перспективы загрязнения, бедности и ядерного уничтожения, появившиеся недавно, сделали мысли о будущем во многом слишком ужасными, чтобы перенести. Однако с по крайней мере с надеждой на лучшее будущее и время, чтобы им насладиться, мы можем более охотно ожидать будущего. Заглядывая вперёд, мы будем видеть больше. Имея собственную ставку в игре, мы будем больше в ней заинтересованы. Большая надежда и предвидение будет благоприятствовать и настоящему, и будущим поколениям; у них будет даже больше чем у нас шансов выжить.
Увеличенная продолжительность жизни будет означать большее количество людей, но без серьёзного усложнения завтрашней проблемы населения. Ожидание более долгой жизни в лучшем мире принесет реальные выгоды, поощряя людей больше думать о будущем. В целом, долгая жизнь и его ожидание кажется хорошим для общества, также, как сокращение продолжительности жизни до тридцать лет было бы плохо. Многие люди хотят для себя долгую и здоровую жизнь. Каковы перспективы для сегодняшнего поколения?
Прогресс в продлении жизни
Послушайте Гильгамеша, король Урик:
"Я просмотрел за стену, и я вижу тела, плывущие по реке, и это будет моим уделом тоже. Я это точно знаю, ибо самый высокий среди людей не достанет небес, а самый великий не вместит землю."
Прошло четыре тысячелетия с тех пор, когда сумерианские писцы наносили знаки на глиняные таблички, чтобы записать поэмы Гильдамеша, но времена изменились. Люди не выше среднего теперь достигли небес и летали вокруг Земли. Мы, дети космического века, века биотехнологии, века революций – нужно ли нам все еще чувствовать отчаяние перед барьером лет? Или мы изучим искусство продления жизни достаточно скоро, чтобы спасти от разложения себя и тех, кого мы любим?
Скорость биомедицинского прогресса рисует дразнящую перспективу. Главные болезни возраста – сердечная болезнь, инсульт и рак – начали уступать лечению. Исследования механизмов старения начали приносить плоды, и исследователи продлили продолжительность жизни животных. Так как знания основываются на предыдущих знаниях, а инструменты приводят к новым инструментам, кажется очевидным, что прогресс будет ускоряться. Даже без машин ремонта клеток, мы имеем причины ожидать значительного прогресса по направлению к замедлению старения и его частичному обращению вспять.
Хотя люди всех возрастов извлекут выгоду из этого прогресса, молодые извлекут большую выгоду. Те, кто будет жить ещё достаточно долго, доживёт до времени, когда старение станет полностью обратимым: самое позднее время появления машин ремонта клеток. Тогда, если не раньше, люди будут становиться здоровее по мере того, как они становится старше, становясь лучше как вино, вместо того, чтобы портиться как молоко. Они вновь получат, если захотят, отличное здоровье и будут жить долгое, долгое время.
В то время, с его репликаторами и дешёвыми космическими полётами, люди будут иметь и долгую жизнь и достаточно места и ресурсов, чтобы ими наслаждаться. Вопрос, который так и вертится на языке: "Когда?… Какое поколение будет последним, которое будет стареть и умирать, а какое будет первым, которое пробьётся в новую жизнь?" Многие люди сейчас разделяют спокойную надежду, что старение однажды будет побеждено. Но обречены ли те, которые живут сейчас, из-за несчастья родиться преждевременно? Ответ окажется и очевидным и удивительным.
Очевидный путь к долгой жизни включает жить достаточно долго, чтобы омолодиться с помощью машин ремонта клеток. Успехи в биохимии и молекулярной технологии продлят жизнь, и за выигранное время они продлят её ещё больше. Для начала мы будем использовать препараты, диеты и упражнения, чтобы продлить здоровую жизнь. В течение нескольких десятилетий успехи в нанотехнологии вероятно принесут первые машины ремонта, а с помощью автоматизированного инжиниринга, за первыми машинами могут быстро последовать продвинутые. Даты всё же остаются в области предположений, но предположение послужит лучше, чем просто вопросительный знак.
Представьте кого-то, кому сейчас тридцать лет. За следующие тридцать лет биотехнология очень сильно продвинется, однако этому тридцатилетнему будет всего шестьдесят. Статистические таблицы, которые не предполагают никаких успехов в медицине, говорят, что тридцатилетний житель США может сейчас ожидать прожить почти ещё пятьдесят лет, т. е. вплоть до 2030-х годов. Довольно обычные успехи (вроде тех, что продемонстрированы на животных) вероятно добавят годы, возможно, десятилетия, к жизни до 2030-ых годов. Самое начало технологии ремонта клеток могло бы продлить жизнь на несколько десятилетий. Короче говоря, медицина 2010, 2020 и 2030-ых по-видимому продлит жизнь наших тридцатилетних до 2040-х и 2050-х годов. К тому времени, если не раньше, продвижения в медицине могут позволить настоящее омоложение. Таким образом, те, кому под тридцать (и, возможно, те, кто существенно старше) могут ожидать, по крайней мере предварительно, что медицина перехватит процесс их старения и переправит их целыми и невредимыми в эру восстановления клеток, энергичности и неограниченной продолжительности жизни.
Если бы это было всё, то разделение между последними на пути к ранней смерти и первыми на дороге к долгой жизни было бы возможно самой существенной брешью между поколениями. Что более важно, гнетущая неопределённость о своей собственной судьбе дала бы повод затолкнуть все эти материи в темницу подсознания расстраивающих размышлений.
Но действительно ли мы находимся в такой ситуации? По-видимому, существует другой путь сохранить жизни, путь, основанный на машинах ремонта клеток, уже применяемых сегодня. Как описывалось в предыдущей главе, машины ремонта будут способны излечивать ткани настолько, насколько существенная структура сохранена. Способность тканей обеспечивать обмен веществ и восстанавливать себя становится неважной; обсуждение биостаза это иллюстрирует. Биостаз, как описано, будет использовать молекулярные устройства, чтобы остановить функцию и сохранить структуру, привязывая молекулярные машинами клетки перекрёстными связями одну к другой. Наномашины обратят биостаз, восстанавливая молекулярные повреждения, удаляя перекрёстные связи и помогая клеткам (а значит и тканям, органам и целому организму) возвращаться в нормальное состояние.
Достижение эры продвинутых машин ремонта клеток кажется ключом к долгой жизни и здоровью, поскольку большинство физических проблем будет излечиваемо. Можно было бы ухитриться прибыть в ту эру, сохраняя себя живым и активным в течение всех лет между сегодняшним днём и тем моментом в будущем, но это просто более очевидный путь, путь, который требует минимум предвидения. Пациенты сегодня часто страдают от остановки сердечной деятельности, в то время как мозговые структуры, которые воплощают память и личность, сохраняются невредимыми. В таких случаях, не могла бы сегодняшняя медицинская технология остановить биологические процессы так, чтобы завтрашняя медицинская технология была способна всё вернуть назад? Если так, то большинство смертей сейчас диагностируется преждевременно, и без на то необходимости.
Глава 9. ДВЕРЬ В БУДУЩЕЕ
Лондон, апрель 1773 года.
Жаку Дюбургу.
Ваши наблюдения о причинах смерти и эксперименты, которые Вы предложили для возвращения к жизни тех, кто кажется убитым молнией, демонстрирует и Вашу проницательность и Вашу гуманность. Представляется, что сама доктрина о жизни и смерти в целом пока понимается лишь очень слабо…
Я хотел бы, чтобы было возможно… изобрести метод бальзамирования утонувших людей, таким образом, что они могли бы быть возвращены к жизни в любой момент, сколь угодно отдалённый; из-за огромного желания видеть и наблюдать государство Америки сто лет спустя, я бы предпочёл обычной смерти быть погружённым с несколькими друзьями в бочку Мадеры до тех пор, и тогда быть возращённым к жизни солнечным теплом моей дорого страны! Но… по всей вероятности, мы живём в век слишком слабо продвинутый, и слишком близкий к детству науки, чтобы видеть такое умение доведённое в наше время до совершенства…
Я… и т. д.
Б.Франклин.
Требования для биостаза
Методы биостаза
Выход из биостаза
Разум, тело и душа
Ответы и аргументы
Время, издержки и действия людей
Бенжамин Франклин хотел процедуру, чтобы остановить и запустить метаболизм, но в то время ничего подобного не было известно. Живём ли мы в век, продвинутый достаточно, чтобы сделать биостаз доступным, чтобы открыть будущее здоровья для пациентов, которые в ином случае не имели бы другого выбора, кроме разложения после того, как выйдет их срок?
Мы можем останавливать метаболизм многими способами, но биостаз, чтобы им можно было пользоваться, должен быть обратимым. Это ведёт к любопытной ситуации. Можем ли мы поместить пациентов в биостаз используя имеющиеся технологии, зависит целиком от того, будут ли будущие технологии в состоянии обратить процесс. Процедура имеет две части, из которых нам нужно овладеть лишь одной.
Если биостаз может сохранять пациента неизменно в течение лет, то те самые будущие технологии будут включать сложные машины ремонта клеток. Следовательно, мы должны оценивать успех существующей процедуры биостаза в свете максимальных способностей медицины будущего. До того, как машины ремонта клеток станут ближайшей перспективой, эти способности, и таким образом требования для успешного биостаза, останутся в большой степени неопределёнными. Сейчас, основные требования кажутся достаточно очевидными.
Требования к биостазу
Молекулярные машины могут строить клетки с нуля, как это показывают делящиеся клетки. Он также могут строить органы и системы органов с нуля, как это показывает развивающийся эмбрион. Врачи будут способны использовать технологию ремонта клеток, чтобы направлять рост органов из клеток самого пациента. Это даёт современным врачам большую свободу в процедурах биостаза: даже если они были вынуждены повредить или уничтожить большинство органов пациента, они тем не менее не нанесли необратимого ущерба. Будущие коллеги, вооружённые лучшими инструментами, будут способны восстанавливать или заменять эти органы. Большинство людей было бы радо иметь новое сердце, свежие почки и более молодую кожу.
Но мозг – другое дело. Врачи, которые допустят разрушение мозга пациента, допустят разрушение пациента как личности, что бы не происходило с остальным телом. Мозг содержит структуры память, личности, Я.
Пациенты после инсульта теряют только часть своего мозга, однако страдают проблемами от частичной слепоты до паралича и потери способности говорить, снижения интеллекта, изменения личности, и хуже. Эффекты зависят от места повреждения. Это говорит о том, что полное разрушение мозга вызовет полную слепоту, паралич, неспособность говорить и безумие, вне зависимости от того, продолжает ли дышать тело или нет.
Как писал Вольтер, "Чтобы подняться вновь, чтобы быть тем же человеком, каким вы были, вы должны сохранить свою память идеально свежей и актуальной; потому что память создаёт вашу самоидентичность. Если ваша память потеряна, как вы можете быть тем же человеком?" Анестезия прерывает сознание, но не разрушает структуры мозга, и процедура биостаза должна делать нечто подобное, на более длительное время. Отсюда возникает вопрос о природе физических структур, которые лежат в основание памяти и личности.
Нейробиология, и информированный здравый смысл, сходятся в базовой сущности памяти. По мере того как мы формируем воспоминания и развиваемся как индивидуальности, наш мозг изменяется. Эти изменения воздействуют на функцию мозга, изменяя рисунок его деятельности: когда мы вспоминаем, наш мозг что-то делает; когда мы действуем, думаем или чувствуем, наш мозг что-то делает. Мозг работает посредством молекулярных машин. Серьёзные изменения в мозговой функции предполагают серьёзные изменения в его молекулярных механизмах – в отличии от памяти компьютера, мозг не сделан так, чтобы мгновенно очищаться и заново заполняться. Личность и долговременная память долговечны.
По всему телу долговременные изменения в функции включают долговременные изменения в молекулярных механизмах. Когда мускулы становятся сильнее и быстрее, их белки изменяются в количестве и распределении. Когда печень приспосабливается иметь дело с алкоголем, её белковое содержание также изменяется. Когда иммунная система научается распознавать новый вид вируса гриппа, белковое содержание снова изменяется. Поскольку машины, основанные на белках в реальности выполняют работу движения мускулов, расщепления токсинов и распознавания вирусов, этой связи можно было ожидать.
В мозгу белки формируют нервные клетки, обсыпают их поверхности, связывают одну клетку с соседней, контролируют поток ионов и каждый нейронный импульс, продуцируют сигнальные молекулы, которые нервные клетки используют, чтобы передавать сигналы по синапсам, и многое, многое другое. Когда принтер печатает слово, он выкладывает на бумагу структуры из чернил; когда нервные клетки изменяют своё поведение, они изменяют свои структуры белков. Печать также оставляет в бумаге некоторые вмятины, и нервные клетки меняют не только свои протеины, однако сказать о чернилах на бумаге и белках в мозгу достаточно, чтобы понять принцип. Происходящие изменения далеко не неуловимые. Исследовании сообщают, что долговременные изменения в поведении нервных клеток включают "поразительные структурные изменения" в синапсах: они заметно изменяются в размере и структуре.
По-видимому, долговременная память – это не что-то очень тонкое, готовое испариться из мозга при малейшем случае. Память и личность – прочно внедрённое в то, каким образом срастаются мозговые клетки, в структуры, формирующиеся за годы опыта. Память и личность не более материальны, чем буквы в романе, однако, подобном им, они воплощены в материю. Память и личность не уносятся прочь при последнем вздохе, как только пациент умирает. На самом деле многие пациенты возвращаются из так называемой "клинической смерти", даже без помощи машин ремонта клеток. Структуры разума разрушаются только когда и если следящие за пациентом врачи позволяют мозгу пациента подвергнуться разложению. Это опять даёт врачам ощутимую свободу в процедурах биостаза: обычно им не требуется останавливать метаболизм до тех пор, пока жизненно важные функции не остановились.
По-видимому, сохранение клеточных структур и структуры белков мозга также сохранит структуру разума и Я. Биологи уже знают как сохранить ткань вот так хорошо. Воскрешающая технология должна дождаться машин ремонта клеток, но технология биостаза кажется уже в большой степени у нас в руках.
Методы биостаза
Мысль, что мы уже располагаем технологиями биостаза может казаться удивительной, поскольку значительные новые возможности редко возникают за одну ночь. В действительности технологии не новы – ново только понимание их обратимости. Биологи разработали два основных подхода по другим причинам.
На протяжении десятилетий биологи использовали электронные микроскопы, чтобы изучать структуру клеток и тканей. Чтобы подготовить образец, они использовали химический процесс, называемый фиксацией, чтобы удерживать молекулярные структуры в фиксированном состоянии. Широко распространённый метод использует молекулы глютаральдегида, гибкие цепочки из пяти атомов углерода с активной группой атомов водорода и кислорода с каждого конца. Биологи фиксируют ткань, прокачивая раствор глютаральдегида через кровяные русла, что позволяет молекулам глютаральдегида проникнуть в клетки. Молекула беспорядочно движется внутри клетки, пока одним концом не вступит в контакт с белком (или другой активной молекулой) и не свяжется с ним. После этого другой конец продолжает болтаться свободным до тех пор, пока также не вступит в контакт с чем-то способным активно вступать в реакции. Обычно это приковывает белковые молекулы к соседним молекулам.
Эти перекрёстные связи удерживают молекулярные структуры и машины на одном месте; потом могут быть добавлены и другие химические вещества, чтобы добиться более всеобъемлющей или прочной фиксации. Электронная микроскопия показывает, что такая процедура фиксации предохраняет клетки и структуры такими, какими они были, включая клетки и структуры мозга.
Первый шаг к гипотетической процедуре биостаза, которую я описал в главе 7, включает простые молекулярные устройства, способные входить в клетки, блокировать их молекулярные машины и структуры с помощью установления перекрёстных связей. Молекулы глютаральдегида подходят под это описание довольно хорошо. Следующий шаг в этой процедуре включает другие молекулярные устройства, способные замещать воду и плотно упаковывать себя вокруг молекул клетки. Это также соответствует известному процессу.
Химические вещества, такие как пропилен гликоль, этилен гликоль и диметил сульфоксид могут проникать в клетки, замещая большую часть воды в них, при этом причиняя минимальный вред. Они известны как «криопротекторы», потому что они защищают клетки от повреждения при низких температурах. Если они заместят достаточно воды в клетке, то охлаждение не будет означать замерзание, оно просто заставляет раствор протектора стать всё более и более густым, переходя от жидкого состояния, которое по консистенции напоминает сироп, к такому, которое напоминает горячую смолу, к такому, которое напоминает холодную смолу, и наконец, к такому, которое также плохо течёт, как стекло. В действительности, в соответствии с научным определением термина раствор протектора и квалифицируется как стекло; процесс затвердевания без замораживания называется витрификацией. Эмбрионы мыши, витрифицированные и сохранённые в жидком азоте, выросли в здоровых мышей.
Процесс витрификации упаковывает стекловидные протекторы плотно вокруг молекул каждой клетки; таким образом витрификация подходит под определение, которое я дал второй фазе биостаза.
Фиксация и витрификация вместе представляются достаточными, чтобы гарантировать долгосрочный биостаз. Чтобы обратить эту форму биостаза, машины ремонта клеток будут перепрограммированы, чтобы удалить стекловидные протекторы и глютаральдегидные перекрёстные связи и далее починить и заместить молекулы, таким образом возвращая клетки, ткани и органы в рабочее состояние.
Фиксация с помощью витрификации – не первая процедура биостаза. В 1962 году Роберт Эттинджер, профессор физики из мичиганского колледжа Хайланд Парк, опубликовал книгу, предлагающую мысль, что будущие успехи в криобиологии могли бы привести к методам легкообратимого замораживания пациентов-людей. Далее он высказал мысль, что врачи, используя будущую технологию, могли бы быть способны восстанавливать и оживлять пациентов, замороженных по имеющимся методам сразу после исчезновения признаков жизни. Он отметил, что при температуре жидкого азота пациент может сохраняться на протяжении веков, если будет в том необходимость, очень мало при этом изменяясь. Например, он предложил мысль, что медицинская наука однажды будет иметь невероятные машины, способные восстанавливать замороженные ткани по одной молекуле. Его книга положила начало крионическому движению.
Крионисты сосредоточили внимание на замораживании потому что многие человеческие клетки самопроизвольно оживают после аккуратного замораживания и оттаивания. Это просто широко распространённый миф, что замораживание разрывает клетки; в действительности замораживание повреждает клетки более тонким образом – настолько тонким, что часто это не причиняет никакого долговременного вреда. Из замороженной спермы регулярно получаются здоровые дети. Некоторые ныне живущие люди выжили, будучи замороженными до твёрдого состояния при температуре жидкого азота – когда они были ранними эмбрионами. Криобиологи активно исследуют способы замораживать и оттаивать жизненно важные органы, чтобы дать возможность хирургам сохранять их для дальнейшей имплантации.
Перспектива будущих технологий клеточного ремонта стала постоянной темой в среде крионистов. Однако они по естественным причинам концентрируются на процедурах, которые сохраняют клеточную функцию. Криобиологи сохраняют жизнеспособные человеческие клетки замороженными на протяжении лет.
Исследователи улучшили свои результаты, экспериментируя со смесями криопротекторных химических веществ и тщательно управляемыми скоростями охлаждения и нагревания. Сложности криобиологии дают богатые возможности для дальнейшего экспериментирования. Это сочетание ощутимого, дразнящего успеха и многообещающей цели для дальнейших исследований сделало поиски обратимого процесса замораживания насущной и привлекательной целью для крионистов. успех в замораживании и оживлении взрослого животного был бы непосредственно очевидным и убедительным.
Что более важно, даже частичное сохранение функции ткани говорит о прекрасном сохранении структуры ткани. Клетки, которые выживают (или почти выживают) даже без особой помощи, будут нуждаться в малом количестве ремонта.
Однако осторожный, консервативный акцент в крионических кругах на сохранение функции ткани вызвал путаницу в общественном сознании. Экспериментаторы заморозили целых взрослых животных и разморозили их, не ожидая помощи машин ремонта клетки. На поверхности результаты оказались обескураживающими: животные не оживали. Для общества и медицинских кругов, которые ничего не знают о перспективах ремонта клеток, это заставило биостаз замораживанием выглядеть бесполезным.
А после предложения Эттинджера, несколько криобиологов решило сделать заявление о будущем медицинской технологии, впрочем мало кем поддержанное. Как утверждал Роберт Прегода в книге в 1967 году: "Почти все эксперты по сниженному метаболизму… считают, что повреждение клеток, вызываемое существующими методами замораживания, никогда не могут быть исправлены." Конечно, это были не те эксперты, которых надо было спрашивать. Вопрос требует экспертов по молекулярной технологии и машинам ремонта клеток. Эти криобиологи, должно быть, сказали только, что исправление повреждений от замораживания очевидно потребует ремонта на молекулярном уровне, а сами они никогда не изучали этот вопрос. Однако же, они непреднамеренно направили общественное мнение по жизненно важному медицинскому вопросу в ложном направлении. Их утверждения отбили охоту использовать дееспособные методы биостаза.
Клетки состоят по большей части из воды. При достаточно низких температурах молекулы воды соединяются и образуют слабую, но твёрдую структуру из перекрёстных связей. Поскольку это предохраняет нейронные структуры, а значит, и структуры разума и памяти, Роберт Эттинджер очевидно определил дееспособный подход к биостазу. По мере того, как молекулярная технология продвигается вперёд, и люди всё больше становятся знакомы с её последствиями, обратимость биостаза (будь то основанном на замораживании, фиксации и витрификации, или на других методах) станет всё более очевидной для всё большего числа людей.
Обратимость биостаза
Представьте, что пациент умер из-за сердечного приступа. Врачи пытаются вернуть его к жизни, но терпят неудачу и теряют надежду восстановить жизненно важные функции. В этой точке, однако, тело и мозг пациента всего лишь перестали функционировать, но большинство клеток и тканей в действительности всё ещё живы и в них происходит обмен веществ. Сделав приготовления заранее, пациент вскоре помещается в биостаз, чтобы предотвратить необратимое разложение и подождать до лучших дней.
Проходят годы. Пациент очень мало изменился, но технология ушла далеко вперёд. Биохимики научились конструировать белки. Инженеры используют белковые машины, чтобы строить ассемблеры, а далее используют ассемблеры, чтобы широкомасштабную нанотехнологию. Благодаря новым приборам биологическое знание стремительно растёт. Биохимические инженеры используют новое знание, автоматический инжиниринг и ассемблеры, чтобы разрабатывать машины ремонта клеток всё более высокой сложности. Они учатся останавливать и обращать вспять старение. Врачи используют технологию ремонта клеток, чтобы возвращать пациентов из биостаза – в первую очередь тех, кто был помещён в биостаз с использованием наиболее совершенных методов, потом тех, кто был помещён в биостаз с использованием более ранних и грубых методик. Наконец, после успешного возвращения к жизни животных, введённых в биостаз с использованием старых методов 1980-х годов, врачи обратятся к нашему пациенту, пострадавшему от сердечного приступа.
На первой стадии подготовки, пациент лежит в резервуаре с жидким азотом, окружённый оборудованием. Стеклообразный протектор всё ещё прочно связывает молекулярные машины каждой клетки. Этот протектор должен быть удалён, но простое нагревание могло бы преждевременно позволить некоторым клеточным структурам начать двигаться.
Хирургические устройства, разработанные для использования при низких температурах проходят через жидкий азот к грудной клетке пациента. Там они удаляют твёрдые сгустки ткани, чтобы получить доступ к основным артериям и венам. Армия наномашин, приспособленных для удаления протекторов проходят через эти отверстия, в первую очередь очищая главные кровеносные сосуды, а потом и капилляры. Это открывает пути к нормально действующим тканям по всему телу пациента. Хирургические машины большего размера далее присоединяют трубки к грудной клетки и прокачивают жидкость через систему циркуляции. Жидкость вымывает первые машины для удаления протектора (позже, она поставляет материал для машин ремонта и отводит отработанное тепло).
Теперь машины накачивают молочную жидкость, содержащую триллионы устройств, которые входят в клетки и удаляют стеклообразный протектор, молекулу за молекулой. Они заменяют их временным молекулярным каркасом, оставляющим достаточно места для работы машин ремонта. По мере того, как эти машины для удаления протектора раскрывают органические молекулы, включая структурные и механические компоненты клеток, они привязывают их к каркасу временными перекрёстными связями. (Если для этого пациента применялись также вещества, устанавливающие перекрёстные связи, эти связи теперь удалятся и будут замещены временными связями.) Когда молекулы нужно переместить в сторону, машины помечают их, чтобы правильно потом заместить. Подобно другим продвинутым машинам ремонта клеток, эти устройства работают под управлением тут же находящихся нанокомпьютеров.
Когда они заканчивают, низкотемпературные машины удаляются. На протяжении серии постепенных изменений в составе и температуре, водяной раствор замещает прежний криогенную жидкость и пациент нагревается вплоть до температур выше нуля. Машины ремонта клеток закачиваются через кровеносные сосуды и входят в клетки. Ремонт начался.
Маленькие устройства исследуют молекулы и сообщают их структуры и положения большему компьютеру, находящемуся в клетке. Компьютер идентифицирует молекулы, и даёт команды о необходимом молекулярном ремонте, и идентифицирует клеточные структуры по расположению молекул. Там, где повреждение изменило структуры в клетке, компьютер даёт команды устройствам ремонта привести молекулы в правильное расположение, используя временные перекрёстные связи, где это необходимо. Тем временем артерии пациента прочищаются, а сердечная мышца, повреждённая много лет назад, восстанавливается.
Наконец, молекулярные машины клетки приведены в рабочее состояние и ремонт более грубый исправил повреждённые структуры расположения клеток, чтобы восстановить ткани и органы и здоровое состояние. Каркас теперь из клеток удаляется, вместе с большей частью временных перекрёстных связей и многими машин ремонта. Однако пока ещё большая часть всех активных молекул клеток сохраняются заблокированными, чтобы предотвратить преждевременную несбалансированную деятельность.
Вне тела система ремонта вырастила свежую кровь из собственных клеток пациента. Теперь она переливает эту кровь, чтобы заполнить систему кровообращения и действует как временное искусственное сердце. Остающиеся устройства в каждой клетке теперь регулируют концентрацию соли, сахара, аденинтрифосфорной кислоты и других малых молекул, большей частью выборочно разблокируя собственные наномашины клеток. При дальнейшем разблокировании обмен веществ шаг за шагом восстанавливается; наконец сердечная мышца окончательно освобождается и готова начать сокращаться. Сердцебиение восстанавливается и пациент выходит из состояния анестезии. Пока ухаживающие за ним врачи проверяют, что всё идёт нормально, системы ремонта заделывают отверстия в грудной клетке, соединяя ткань с тканью без нити и иглы. Остающиеся устройства в клетках разбирают друг друга на безопасные продукты обмена веществ или питательные молекулы. По мере того, как пациент переходит к обычному сну, в комнату входя