Молекулярно-лучевая эпитаксия

Молекулярно-лучевая эпитаксия (МЛЭ) по существу является развитием до совершенства технологии вакуумного напыления тонких пленок. Ее отличие от классической технологии вакуумного напыления связано с более высоким уровнем контроля технологического процесса. В методе МЛЭ тонкие монокристаллические слои формируются на нагретой монокристаллической подложке за счет реакций между молекулярными или атомными пучками и поверхностью подложки. Высокая температура подложки способствует миграции атомов по поверхности, в результате которой атомы занимают строго определенные положения. Этим определяется ориентированный рост кристалла формируемой пленки на монокристаллической подложке. Успех процесса эпитаксии зависит от соотношения между параметрами решетки пленки и подложки, правильно выбранных соотношений между интенсивностями падающих пучков и температуры подложки. Когда монокристаллическая пленка растет на подложке, отличающейся от материала пленки, и не вступает с ним в химическое взаимодействие, то такой процесс называется гетероэпитаксией. Когда подложка и пленка по химическому составу не отличаются или незначительно отличаются друг от друга, то процесс называется гомоэпитаксией или автоэпитаксией. Ориентированное наращивание слоев пленки, которая вступает в химическое взаимодействие с веществом подложки, называют хемоэпитаксией. Граница раздела между пленкой и подложкой имеет ту же кристаллическую структуру, что и подложка, но отличается по составу как от материала пленки, так и материала подложки.

По сравнению с другими технологиями, используемых для выращивания тонких пленок и многослойных структур МЛЭ характеризуется, прежде всего малой скоростью роста и относительно низкой температурой роста. К достоинствам этого метода следует отнести возможность резкого прерывания и последующего возобновления поступления на поверхность подложки молекулярных пучков различных материалов, что наиболее важно для формирования многослойных структур с резкими границами между слоями. Получению совершенных эпитаксиальных структур способствует и возможность анализа структуры, состава и морфологии растущих слоев в процессе их формирования методом дифракции отраженных быстрых электронов (ДОБЭ) и электронной оже-спектроскопии (ЭОС).

Упрощенная схема ростовой камеры МЛЭ показана на рис. 3.1. Испарение материалов, осаждаемых в сверхвысоком вакууме на подложку, закрепленную на манипуляторе с нагревательным устройством, осуществляется с помощью эффузионных ячеек (эффузия – медленное истечение газов через малые отверстия). Схема эффузионной ячейки приведена на рис. 3.2. Эффузионная ячейка представляет цилиндрическийе стакан, выполненный из пиролитического нитрида бора или высокочистого графита. Поверх тигля располагаются нагревательная спираль из танталовой проволоки и тепловой экран, изготовленный обычно из танталовой фольги.

Эффузионные ячейки могут работать в области температур до 1400 0С и выдерживать кратковременный нагрев до 1600 0С. Для испарения тугоплавких материалов, которые используются в технологии магнитных тонких пленок и многослойных структур, нагревание испаряемого материала осуществляется электронной бомбардировкой. Температура испаряемого вещества контролируется вольфрам-рениевой термопарой, прижатой к тиглю. Испаритель крепится на отдельном фланце, на котором имеются электрические выводы для питания нагревателя и термопары. Как правило, в одной ростовой камере располагается несколько испарителей, в каждом из которых размещены основные компоненты пленок и материалы легирующих примесей.

 
  Молекулярно-лучевая эпитаксия - student2.ru



Молекулярно-лучевая эпитаксия - student2.ru
Ростовые камеры современных технологических комплексов МЛЭ оборудованы, как правило, квадрупольным масс-спектрометром для анализа остаточной атмосферы в камере и контроля элементного состава на всем технологическом процессе. Для контроля структуры и морфологии формируемых эпитаксиальных структур в камере роста располагается также дифрактометр отраженных быстрых электронов. Дифрактометр состоит из электронной пушки, которая формирует хорошо сфокусированный электронный пучок с энергий 10 – 40 кэВ. Электронный луч падает на подложку под очень небольшим углом к ее плоскости, рассеянные электронные волны дают дифракционную картину на люминесцентном экране. Часто ростовые камеры или в многокамерных комплексах МЛЭ в камере для подготовки и анализа подложек и эпитаксиальных структур располагаются электронная пушка с энергоанализатором вторичных электронов и ионная пушка для очистки подложек ионным травлением и послойного анализа состава эпитаксиальных структур.

Наиболее важная для технологического процесса область ростовой камеры находится между эффузионными ячейками и подложкой (рис. 3.1). Эту область можно разделить на три зоны, которые обозначены на рисунке цифрами I, IIи III. Зона I –зона генерации молекулярных пучков, в этой зоне молекулярные пучки, формируемые каждой из эффузионных ячеек, не пересекаются и не влияют друг на друга. Во второй зоне (зона II – зона смешения испаряемых элементов) молекулярные пучки пересекаются и происходит перемешивание различных компонент. О физических процессах, происходящих в этой зоне известно в настоящее время очень мало. В непосредственной близости от поверхности подложки располагается зона III –зона кристаллизации. В этой зоне происходит эпитаксиальный рост в процессе молекулярно-лучевой эпитаксии. Подробно процессы, происходящие в зоне кристаллизации, будут рассмотрены в следующем разделе.

В промышленности, научно-исследовательских лабораториях широкое распространение в настоящее время получили автоматизированные многомодульные комплексы для молекулярно-лучевой эпитаксии. Модуль – это часть установки, выделенная по функциональным и конструктивным признакам. Модули подразделяются на технологические и вспомогательные. Каждый технологический модуль предназначен для проведения определенного технологического процесса (очистка подложек и анализ состояния их поверхности, эпитаксия полупроводниковых пленок, осаждение металлов и диэлектриков и т.д.). Вспомогательными модулями являются, например, модуль загрузки –выгрузки подложек, модуль предварительной откачки и обезгаживания вакуумных камер и др. Комплекс для МЛЭ в зависимости от технологических задач может быть укомплектован различным количеством специализированных модулей, соединенных между собой шлюзовыми устройствами и системой перемещения подложек и образцов из одного модуля в другой без нарушения вакуума.

Тенденции развития разработок в направлении создания установок для МЛЭ связаны с все более широким применением встроенного аналитического оборудования и автоматизацией технологического процесса, что позволяет улучшить воспроизводимость свойств выращиваемых эпитаксиальных структур и создавать сложные многослойные структуры.

Рассмотрим конкретный пример реализации модульного принципа построения комплекса МЛЭ, разработанного в Институте физики полупроводников СО РАН (г. Новосибирск). На рис. 3.3. представлена упрощенная схема вакуумно-механической системы этого комплекса. Комплекс состоит из трех технологических модулей - модуль анализа и подготовки подложек (ПАП), эпитаксии полупроводниковых соединений (ЭПС) и эпитаксии элементарных полупроводников, металлов и диэлектриков (ЭПМ). Вакуумно-механическая система комплекса включает также модуль загрузки и выгрузки подложек (ЗВП), систему транспорта подложек, систему предварительной откачки и получения сверхвысокого вакуума.

Молекулярно-лучевая эпитаксия - student2.ru
Аналитическое оборудование комплекса представлено в модуле ПАП встроенным оже-спектрометром и ионной пушкой для очистки подложек и оже-профилирования. Каждый из блоков ЭПС и ЭПМ содержит масс-спектрометр для контроля остаточных газов и молекулярных пучков и дифрактометр отраженных быстрых электронов для контроля структуры и морфологии эпитаксиальных слоев в процессе роста. Помимо вакуумно-механической системы в комплекс входит автоматизированная система управления технологическим процессом, позволяющая независимо и одновременно управлять технологическими процессами как под контролем оператора, так и в автоматическом режиме.


Наши рекомендации