Термическая и химико-термическая обработка стали
Термическая обработка стали. Термической обработкой называется процесс нагрева металла до определенной температуры, выдержки при этой температуре и последующего охлаждения с той или иной скоростью. В результате такого процесса не изменяется химический состав металла, но меняются его структура и механические свойства.
Структуру металла (его строение) можно определи по излому. На поверхности излома видно большое количество зерен, связанных между собой. Каждое такое зерно состоит из мельчайших частиц - атомов, которые, располагаясь в определенном порядке, образуют кристаллическую решетку.
В металлах чаще всего встречаются три типа расположения атомов: атомы располагаются в углах и в центре куба, образуя кубическую объемно-центрированную решетку (рис. 7.1,а); атомы располагаются по углам куба и в середине каждой его грани, образуя кубическую гранецентрированную решетку (рис. 7.1,б); атомы располагаются в углах и в центре на шестигранных основаниях призмы и три атома внутри ее, образуя гексагональную решетку (рис. 7.1,в).
Процесс перестройки атомов одного вида пространственной решетки в другой при определенных температурных условиях называют аллотропическим превращением. Аллотропические формы, в которых кристаллизуется металл, называют модификациями и обозначают a, b, g, d и т. д.
Атомы меняют свое расположение, в зависимости от температуры нагрева. При нагреве железа до температуры 910°С атомы располагаются в виде куба, образуя кристаллическую решетку a-железа; восемь атомов расположены по углам решетки и один - в центре ее (рис. 7.1.а). Если нагревать железо выше 910°С, кристаллическая решетка с перегруппиро-ванными атомами превращается в куб с четырнадцатью атомами и образует решетку g -железа (рис.7.1,б).
В сталях превращение a-железа в - g -железо протекает при температуре более низкой (723°С), чем в чистом железе. Если нагретый металл медленно охлаждать, то перестройка кристаллической решетки происходит в обратном порядке.
Свойства металла зависят от расположения атомов в кристаллической решетке. Железо в отожженной стали находится в форме a-железа и называется ферритом. Углерод же с железом связан химически, и такая структура называется цементитом (карбид железа). Феррит вязок, а цементит обладает большой, твердостью и хрупкостью. Структура, при которой зерна цементита равномерно расположены в феррите, называется перлитом. Твердый раствор углерода в железе, образующийся при высокой температуре, называется аустенитом. Структура закаленной стали, полученная при быстром охлаждении, называется мартенситом; такая сталь обладает высокой твердостью и хрупкостью.
Термическая обработка бывает нескольких разновидностей: отжиг, нормализация, закалка и отпуск, поверхностная закалка, обработка холодом.
Отжиг применяется в основном для снижения твердости, чтобы облегчить механическую обработку и снять в стали внутренние напряжения. Температура нагрева при отжиге зависит от содержания в стали углерода. Сталь с содержанием углерода более 0,8% нагревают до температуры 750 - 760°С, для стали с меньшим содержанием углерода температуру постепенно повышают до 930—950°С. После нагрева металл медленно охлаждают в печи. В отожженном состоянии сталь приобретает перлитную структуру.
Нормализация предназначается для улучшения структуры стали, снятия внутренних напряжений и обеспечения лучших условий обработки резанием. Она отличается от отжига тем, что охлаждение производится не в печи, а на воздухе.
После нормализации сталь приобретает также перлитную, но более мелкозернистую и однородную структуру. Твердость и прочность стали при этом выше, чем после отжига.
Закалка заключается в нагреве стали до определенной температуры, выдержке при этой температуре и последующем быстром охлаждении в воде, масле, расплавленных солях или на воздухе. Закалка применяется в сочетании с отпуском для повышения твердости, прочности и износоустойчивости стали.
Углеродистые и легированные стали под .закалку нагреваются в электрических печах или в соляных ваннах. В результате закалки сталь получает мелкозернистую структуру, в которой преобладает мартенсит - самая твердая и хрупкая структура.
При быстром охлаждении во время закалки в металле возникают внутренние напряжения, которые могут вызвать трещины, коробление и хрупкость. Эти дефекты устраняют последующим отпуском.
Отпуск заключается в нагреве стали до температуры, значительно более низкой, чем при закалке, выдержке при этой температуре и охлаждении. Углеродистые и легированные стали нагревают до температуры 150 - 250°С, а быстрорежущие подвергаются трехкратному отпуску при температуре 550 - 580°С. Охлаждение осуществляется на воздухе.
Поверхностная закалка представляет собой нагрев до определенной температуры (температуры закалки) поверхностного слоя стального изделия с последующим быстрым охлаждением. При этом можно получить высокую твердость в относительно тонком слое (от 0,3 до 10 мм) рабочих поверхностей изделия без изменения структуры и твердости внутренней массы металла этого изделия. Такое свойство особенно ценно для напряженно работающих деталей (коленчатые валы двигателей, зубчатые колеса и др.),' которым необходима большая твердость трущихся рабочих частей и упругая (нехрупкая) основная масса металла изделия.
Поверхностная закалка осуществляется на специальных высокочастотных установках с помощью индукторов, через которые пропускают токи высокой частоты (ТВЧ). Высокочастотная поверхностная закалка обеспечивает хорошее качество металла, поэтому широко применяется в промышленности.
Обработка холодом заключается в повышении твердости и износоустойчивости стали в результате перевода остаточного аустенита закаленной стали в мартенсит.
Эта обработка производится на специальных установках, обеспечивающих температуру ниже нуля.
Химико-термическая обработка. Химико-термическая обработка применяется для изменения химического состава и свойств поверхностной твердости, износоустойчивости и коррозионной стойкости. Достигается это внедрением (диффузией) определенных элементов из внешней среды в поверхностный слой металла.
К химико-термической обработке стали относятся: цементация, азотирование, цианирование, алитирование.
Цементация - насыщение поверхностного слоя стали углеродом при нагреве до температуры 880—950°С с последующей закалкой. Цель ее - получение высокой твердости и износоустойчивости поверхности детали. Цементации подвергаются детали из низкоуглеродистой стали с содержанием углерода 0,1 - 0,25%. При насыщении количество углерода может быть доведено до 1 - 1,25%. Цементацию деталей обычно производят после их механической обработки с оставлением припуска на окончательную шлифовку.
Азотирование - поверхностное насыщение стали азотом при нагреве до температуры 500—700°С в аммиаке. Азотированию подвергают главным образом детали, изготовленные из сталей, содержащих алюминий, хром и молибден, для повышения твердости, износоустойчивости поверхностного слоя и коррозионной стойкости.
Цианирование - совместное насыщение поверхности стали одновременно углеродом и азотом при температуре 530—550°С. Оно может выполняться в жидкой, твердой и газообразной средах. Цианирование применяют для повышения стойкости спиральных сверл и других быстрорежущих инструментов и деталей сложной конфигурации.
Алитирование - поверхностное насыщение стали алюминием, диффузией его сред, содержащих алюминий. При этом сталь приобретает высокую окалиностойкость (при температурах до 800—850°С). Применяется алитирование для топливных баков газогенераторных машин, чехлов термопар, разливочных ковшей и т. д.
Коррозия металлов и защитные покрытия. Коррозией называется процесс разрушения металлов вследствие химического и электрохимического взаимодействия их с окружающей внешней средой. В деталях и сооружениях под действием коррозии происходит постепенное разрушение поверхности, образование раковин, а также полное изменение металла, например, тонкие листы металла могут целиком превратиться в ржавчину.
Потери металла от коррозии довольно велики и наносят ущерб хозяйству. В обычных условиях коррозия развивается под действием воды и кислорода. Известно несколько видов коррозии, основными из них (по разрушительному действию) являются химическая и электрохимическая.
Химическая коррозия является результатом воздействия на металл агрессивной среды, не проводящей электрический ток. Такой средой могут быть газы или некоторые органические вещества, например масла. На поверхности металла образуются химические соединения, чаще всего пленки окислов.
Электрохимическая коррозия возникает при соприкосновении металла с жидкостью, проводящей электрический ток и называемой электролитом. Такими жидкостями могут быть кислоты, щелочи, растворы солей, почвенная вода и пр.
Чтобы предохранить металл от коррозии, применяют следующие основные способы его защиты: металлические покрытия; неметаллические покрытия; химические покрытия.
Металлические покрытия.На защищаемый от коррозии металл наносят тонкий слой другого металла, обладающего большой антикоррозионной стойкостью. Нанесение металлических покрытий производится следующими способами: горячим, гальваническим, металлизацией (распылением) и др.
При горячем способе покрытие образуется в результате погружения деталей в ванну с расплавленным металлом. Этим способом производится цинкование (покрытие цинком), лужение (оловом), свинцевание (покрытие свинцом), алитирование (алюминием).
Гальванический способ заключается в том, что на поверхность изделий, погруженных в ванну с электролитом, под действием электрического тока осаждается тонкий слой металла. Гальванические покрытия образуются при электролизе раствора солей таких металлов, как цинк, олово, свинец, никель, хром и др.
Преимущество этого способа перед другими в том, что он допускает нанесение любого металла на изделия с требуемой толщиной слоя защитного покрытия (от 0,005 до 0,030 мм) без нагрева изделия. Распространены следующие гальванические покрытия: хромирование, никелирование, цинкование и др.
Металлизация(распыление) заключается в нанесении тонкого слоя' расплавленного металла на изделие специальным аппаратом металлизатором.
Неметаллические покрытия.Для защиты от коррозии изделия покрывают лаками, красками, эмалями и смазкой. Назначение этих покрытий - изоляция металла от воздействия внешней среды.
Лакокрасочные покрытия составляют около 65 - 70% от всех антикоррозионных покрытий. Недостаток этих покрытий - их малая механическая прочность и обгорание при высоких температурах.
Химические покрытия на поверхности изделий образуют защитные неметаллические пленки, чаще всего окисные. Такие покрытия образуются в результате обработки паром и др.
При оксидировании изделия погружают в растворы азотнокислых солей при температуре около 140°С.
Обработку паром готовых инструментов или деталей машин применяют для увеличения коррозионной стойкости и уменьшения износа рабочих поверхностей инструментов и деталей в процессе их работы. Паром обрабатывают детали и инструменты после термической и окончательной механической обработки, включая заточку и доводку. Стальные изделия при нагреве до 400 - 600°С под действием паров воды подвергаются активному окислению с образованием на поверхности характерной окисной пленки
При этом происходит дополнительный отпуск - снимаются напряжения, полученные на предыдущих операциях. Окисная пленка играет роль твердого и смазывающего вещества и способствует увеличению износостойкости и коррозионной устойчивости деталей.
Неметаллические материалы
Наряду с металлами во всех отраслях промышленности большое распространение получили неметаллические материалы. К ним относятся пластические массы, резина, химикаты, формовочные, текстильные, древесные, лакокрасочные и другие материалы. Особо следует отметить пластмассы, с каждым годом все шире внедряемые в промышленность.
Пластмассы. Пластмассы представляют собой материалы, основой которых служат природные или синтетические соединения, способные при нагревании или под давлением формоваться и устойчиво сохранять приданную им форму. В состав пластмасс входят различные наполнители (древесная мука, ткань, бумага, стеклянное волокно, хлопковые очесы и др.), повышающие прочность, связующие веществ, (естественные и искусственные смолы, фенолоформальдегидные смолы), красители, пластификаторы, повышающие пластичность и эластичность, а также ряд других вспомогательных веществ.
Большинство изделий из пластмасс изготовляется горячим прессованием в металлических пресс-формах или литьем под давлением. Поэтому они не нуждаются в последующей механической обработке. Из пластмасс (слоистых), выпускаемых в виде прутков и листового материала, изделия изготовляют механической обработкой.
Изделия из пластмасс имеют малую плотность, достаточную прочность, высокие антикоррозионные и электроизоляционные свойства; они значительно дешевле металлических изделий.
Пластмассы применяются в качестве заменителей дефицитных цветных металлов и сплавов при производстве электроаппаратуры, зубчатых колес, вкладышей, подтипов, вытяжных штампов и даже крупногабаритных изделий (кузова автомобилей и др.).
Основные виды пластмасс, имеющие промышленное значение, следующие: текстолит (содержащий ткань), гетинакс (содержащий бумагу), лигнофоль и дельтадревесина(содержащие, древесину), стеклопластики (со стекловолокнистым наполнителем), полиэтилен, полистирол, карболит, волокнит, различные полимеры и др.
Абразивные материалы.Абразивные материалы представляют собой большую группу неметаллических материалов высокой твердости, предназначенных для шлифовки, заточки и доводки инструмента, деталей и т. д. Из абразивных материалов изготовляются шлифовальные круги, шлифовальные шкурки, шлифовальные порошки, доводочные пасты и др.
Абразивные материалы бывают природные (алмаз, кварц, корунд, гранат) и искусственные (электрокорунд нормальный, электрокорунд титанистый, монокорунд, карбидкремния зеленый и черный, карбид бора, синтетические алмазы, кубический нитрид бора и др.). Чаще всего на машиностроительных заводах используют искусственные абразивные материалы.
Режущие свойства абразивных материалов зависят от их зернистости, твердости, рода связки и структуры.
Зернистость (размер зерна) абразивного материала по ГОСТ 3647-80 имеет следующие номера: 200, 160, 125, 100, 80, 63, 50, 40, 32, 25, 20, 16, 12, 10, 8, 6, 5, 4, 3, М40, М20, М14, М10, М7, М5 в порядке уменьшения размера зерна. Номер зерна соответствует длине стороны ячейки сита в сотых долях миллиметра. В зависимости от размера зерна абразивные материалы разделяются на три группы: шлифзерна (№200 - 16), шлифпорошки (№12 - 3) и микропорошки (№ 40 - М5).
Абразивные материалы имеют высокую твердость и уступают по твердости только алмазу. Под твердостью абразивного круга понимают не твердость зерна, а прочность связки, ее способность удерживать шлифующие зерна при эксплуатации. Согласно ГОСТ 19202—80 различают следующую твердость абразивных кругов: мягкие (М1, М2,), среднемягкие (СМ1, СМ2), среднетвердые (СТ1, СТ2, СТЗ), твердые (Т1, Т2).
Абразивные зерна при изготовлении абразивных инструментов соединяются между собой связками: керамической (К), бакелитовой (Б), вулканитовой (В) и др.
Структура абразивного инструмента характеризуется объемным соотношением между зернами, связкой и порами. Абразивный инструмент имеет три структуры: плотную (№ 0 - 3), среднеплотную (№ 4 - 8) и открытую (№9 - 12).
Абразивная промышленность выпускает все необходимые для производства абразивы, причем электрокорунд составляет 75% от всего выпуска абразивов, он содержит 92 - 94% окиси алюминия. Электрокорунд обладает большой твердостью и вязкостью. Он бывает двух разновидностей: электрокорунд нормальный (Э-1А) и электрокорунд белый (ЭБ-2А). Тот и другой применяю для обработки сталей, чугуна, вязкой бронзы и т. д.
Для обработки твердых сплавов, серого чугуна, меди, алюминия и других металлов и сплавов, обладающих низким сопротивлением разрыву, применяют абразивные инструменты из карбида кремния двух марок: КЗ-6С (зеленый)| и КЧ-5С (черный).
Природные и искусственные (синтетические) алмазы Из всех абразивных материалов особое место занимают природные и искусственные (синтетические) алмазы. Твердость алмаза значительно превосходит твердость всех применяемых в промышленности инструментальных и абразивных материалов. Алмаз заслуженно называют «королем твердых тел».
Алмаз и технический прогресс неотделимы. Однако до недавних пор применение природных алмазов в промышленности ограничивалось их добычей. В настоящее время, несмотря на успешную разработку богатейших месторождений, добыча алмазов еще не может удовлетворять возрастающую потребность общества.
Поэтому наряду с природными алмазами все большее значение для техники приобретают искусственные (синтетические) алмазы. Синтетические алмазы при изготовлении из них алмазно-абразивного инструмента не только не уступают природным, но имеют перед ними значительные пре имущества - они дешевле и обладают большой работоспособностью. Синтетическому алмазу покоряются самые твердые труднообрабатываемые материалы: оптическое и техническое стекло, хрусталь, кварц, твердые сплавы, фарфор, корунд, мрамор, гранит, германий, кремний, различная керамика, бетон, огнеупоры и др.
В первую очередь синтетические алмазы получили широкое применение в инструментальном производстве для заточки и доводки твердосплавного металлорежущего инструмента, что повышает его стойкость в 2 - 3 раза, сокращает расход твердых сплавов в 1,5 - 2 раза, повышает класс шероховатости обрабатываемой поверхности.
Наиболее перспективными являются синтетические сверхтвердые материалы, созданные на базе поликристаллов алмаза (карбонадо, баллас) и кубического нитрида бора (эльбор-Р, композит, гексанит-Р).
Поликристаллы кубического нитрида бора превосходят по теплостойкости алмазы, быстрорежущую сталь, твердый сплав и минералокерамику. Сочетание таких уникальных физико-химических свойств позволяет применять эльбор-Р при обработке закаленных сталей, чугунов и различных труднообрабатываемых материалов. При этом достигается шероховатость поверхности 7 - 10-го классов, точность обработки 6 - 7-го квалитета.
Эльбор-Р применяется для изготовления резцов, зенкеров, фрез, шлифовальных и полировальных кругов и другого инструмента.
В нашей стране получили наибольшее распространение марки синтетических алмазов: АСО, АСР, АСВ.
АСО — алмазные зерна обычной прочности. Используют для изготовления кругов на органической связке и применяют для чистовой заточки и доводки режущих инструментов.
АСР — алмазные зерна повышенной прочности. Используют для изготовления кругов на органической, металлической и керамической связках и применяют для снятиябольших припусков и предварительной заточки инструмента.
АСВ — алмазные зерна особо высокой прочности. Используют для изготовления алмазных кругов на металлической связке, работающих в особо тяжелых условиях.
Алмазно-абразивный инструмент изготовляется на органи ческой, металлической, керамической, металло-гальванической, эластичной (резиновой) и других связках. Выбирают ее с учетом применяемой марки алмаза, обрабатываемого материала, вида и режима обработки.
Одной из важнейших характеристик алмазно-абразивного инструмента, определяющей его режущую способность, производительность и срок службы, является концентрация алмаза в инструменте. В нашей стране большее распространение получил инструмент с концентрацией алмаза 50, 100 и 150%. За 100%-ную концентрацию принимается содержание алмаза в алмазоносном слое, равное 25% его объема, что составляет 4,4 карата алмаза в 1 см3 (карат равен 0,2 г).
Из синтетических алмазов изготовляются резцы, шлифовальные круги, бруски, надфили, головки, шлифовальные шкурки и пасты.
Вспомогательные материалы.К вспомогательным материалам относятся смазочные, смазочно-охлаждающие жидкости, обтирочные материалы и др.
В качестве смазочных жидкостей применяют минеральные и синтетические масла. К охлаждающим жидкостям, которыми пользуются при обработке металлов резанием, относятся мыльная и содовая вода, масляные эмульсии и др.
Смазочными жидкостями обычно смазывают узлы машин и механизмов для уменьшения трения, а также для охлаждения в процессе работы режущими инструментами. При обработке резанием углеродистых и легированных сталей в качестве охлаждающих жидкостей используют эмульсии и реже растительные масла, а при нарезании резьбы - эмульсии, сульфофрезол и растительные масла.
Для удаления со станков мелкой стружки и масла, обтирания инструментов и обрабатываемых деталей применяются хлопчатобумажные концы и тряпки.
ЛЕКЦИЯ 8
План лекции
8.1. Взаимозаменяемость и стандартизация