Перспективный ряд ракет-носителей

В ноябре 1986 г., после изучения опубликованных в июне материалов комиссии по расследованию причин гибели "Челленджера", всколыхнулась волна критического анализа собственной конструкции и сформулировались позиции к безопасности наших систем.
Разработчики корабля утверждали, что невнимание к возможности появления отказа даже в "сверхнадежной системе" и отсутствие хотя бы минимальной страховки на этот случай - одна из причин трагедии "Челленджера". Позиция отождествления понятий надежности и безопасности поставлена этой аварией под сомнение. С 1982 г. ими ставился вопрос о необходимости широкого внедрения мероприятий по безопасности в дополнение к усилиям по обеспечению высокой надежности. Разработчики корабля всегда исходили из того, что может случиться нечто непредвиденное - в среднем на 27 полетов приходится одна авария.
Разработчики корабля "Буран" настаивали на реализации контура безопасности с внедрением дополнительных средств ее обеспечения. Эти меры в комплексе давали возможность повысить безопасность на некоторую не очень высокую величину. Схема распределения этих величин дает достаточно полное представление. Эти меры в основном под настойчивым напором "корабелов" были реализованы.
Нами, "ракетчиками", был проведен анализ доклада президентской комиссии по аварии "Спейс Шаттла" с орбитальной ступенью "Челенджера". Были рассмотрены проблемы обеспечения безопасности "Спейс Шаттла" на участке выведения в свете произошедшей трагедии в сопоставлении с аналогичными проблемами, решаемыми при разработке "Энергии" - "Буран". Как "Спейс Шаттл", так и "Энергия", - чрезвычайно сложные аэродинамические системы, пилотируемые полеты на которых органически связаны с риском даже при реализации мероприятий по обеспечению безопасности, рекомендованных комиссией Роджерса. Риск потери экипажа не исключается. Не исключен риск и для ракеты-носителя "Энергия" и орбитального корабля "Буран" даже при реализации принятых предложений по дополнительным средствам обеспечения безопасности - катапультирования двух-четырех членов экипажа, экстренного отделения орбитального корабля. В связи с этим принятие любого решения о пилотируемых пусках "Энергии"-"Бурана" без кардинального изменения подхода к проблеме безопасности связано с риском потери экипажа.
Никто и нигде убедительно не показал необходимость и целесообразность использования экипажа при транспортировке грузов на таких потенциально опасных и сложных системах, тем более что задача доставки двух-четырех человек на орбиту может быть решена на других, более простых, меньших по размерности, достаточно отработанных системах с высокоэффективными средствами спасения экипажа.
Система "Энергия" - "Буран" по сравнению с многоразовым кораблем "Спейс Шаттл" обладает тем преимуществом, что в его составе находится универсальное многоцелевое средство выведения полезных грузов - ракета-носитель "Энергия". Это обстоятельство позволяет осуществить принципиально новый подход к решению проблемы безопасности полетов. Сущность этого подхода в том, что весь грузопоток на орбиту может быть обеспечен с помощью беспилотных пусков "Энергии". При необходимости осуществления пилотируемых полетов следует делать их чисто "пассажирскими", решающими в основном задачи доставки экипажей на пилотируемые станции проведения сборочных, монтажных и ремонтных работ.
Высвободившаяся энергетика ракеты-носителя (порядка 30 т от 100 в массе полезного груза) может быть использована для создания высокоэффективных средств спасения экипажа типа отделяемой кабины и повышения надежности функционирования ракет-носителей. Такого рода вариант преследует цель уверенного спасения экипажа в любой точке траектории.
В этой связи нами в то время было предложено: на первом этапе отработки системы основное внимание сосредоточить на грузовой модификации ракеты "Энергия", пуски ракеты-носителя с двумя орбитальными кораблями, изготавливаемыми в то время, вести только в беспилотном варианте, рационально распределить пилотируемые пуски "Бурана" и других пилотируемых комплексов, провести проработки по пассажирскому варианту орбитального корабля с отделяемой кабиной экипажа, обеспечивающей спасение на всех этапах выведения корабля и приостановить изготовление дополнительных орбитальных кораблей для завершения проработок.
Разобраться с моей постановкой было поручено О.Н.Шишкину. В результате длительного обсуждения с участием В.П.Глушко, Ю.А.Мозжорина к совместному решению не пришли, но обойти эту постановку было нельзя. Договорились, что я не должен организовывать широкого обсуждения проблемы до начала летных испытаний и, прежде всего, до пуска "Энергии" N6СЛ.
Проблема безопасного пилотируемого полета стоит более внимательного анализа и ждет своего решения...
На протяжении всей работы в ходе планирования и осуществления космических программ НАСА неоднократно сталкивалось с трудностями. Деятельность НАСА характеризовалась наличием неудач, которые осложняли положение и ставили под сомнение финансирование и успешность ряда текущих и перспективных космических программ. Среди них - срыв графика полетов "Шаттла", ошибка при изготовлении главного зеркала и отказ одного из дорогостоящих (свыше 2 млн. долл.) силовых гироскопов обсерватории "Хаббл", крупные недостатки в конструкции станции "Фридом", вызвавшие очередной, уже третий по счету, пересмотр ее проекта. В связи с этими неудачами в США, решением Национального совета по космосу была создана специальная комиссия для изучения гражданской космической программы США под председательством вице-президента фирмы "Мартин Мариетта" Нормана Огэстина.
В декабре 1990 г. комиссия после четырех месяцев работы представила отчет, в котором излагались основные недостатки в работе НАСА и даются рекомендации по дальнейшему выполнению гражданской космической программы США. Основные выводы комиссии Н. Огэстина следующие: - полеты "Шаттла" должны проводиться только для выполнения тех задач, которые не могут быть выполнены без участия космонавтов, а изготовление новых орбитальных ступеней должно быть прекращено (последний образец орбитальной ступени "Индевор" - "Стремление", стоимостью 1,8 млрд. долл., был передан НАСА 25 апреля 1991 г.):
- следует немедленно начать проектирование новых беспилотных транспортных космических средств с использованием существующих технологий, чтобы уменьшить зависимость от "Шаттла", еще одна катастрофа которого не исключена в ближайшие несколько лет;
- пересмотреть приоритет работ НАСА по освоению космического пространства, сделав основной упор на научных исследованиях Земли из космоса с помощью спутников и исследования дальнего космоса с помощью пилотируемых и беспилотных космических аппаратов;
- полностью пересмотреть конструкцию космической станции "Фридом" в сторону ее упрощения и уменьшения стоимости (считается возможным выбрать модульный принцип ее построения); основой научной деятельности на борту станции должны стать биологические эксперименты и получение новых материалов в условиях невесомости.





НАСА уже приняло к исполнению многие рекомендации комиссии Н.Огэстина. Например, в соответствии с требованиями Конгресса США пересмотрен проект станции "Фридом". В начале марта 1991 г. пересмотренный проект направлен в Национальный совет по космосу. После утверждения Национальным советом по космосу проект станции "Фридом" предусматривалось передать в Конгресс США для окончательного рассмотрения и принятия решения о его финансировании.
Выполнение намеченной в США программы исследований космического пространства, а также задач в интересах ВВС и ведомств, ведущих работу по программе стратегической обороны (СОИ - "звездные войны"), требует значительного увеличения объема транспортных операций между Землей и околоземными орбитами уже в начале первого десятилетия следующего столетия. Расчеты американских специалистов показывают, что удовлетворить потребности этих программ, с учетом имеющихся ресурсов, будет возможным при использовании более экономичных систем. Наряду с этим Министерством обороны предусматривается вывод на различные околоземные орбиты полезных нагрузок в широком диапазоне масс. Рассчитанные на ближайшие сроки потребности ведомств, реализующих программу "звездных войн", состояли в выведении на околоземные орбиты грузов массой от 45 до 68 т.
Предполагалось создать четыре группы модификаций ракет-носителей, охватывающих по грузоподъемности диапазон масс полезных нагрузок от 18 до 180 т. Первая группа рассчитана на полезные нагрузки массой от 18 и менее т до 36. Вторая группа - от 36 до 50 т, третья - 45-90 т и четвертая - до 180 т.
Стратегия НАСА и Министерства обороны США в области космической техники претерпевала коренные изменения, когда стали предусматривать использование одноразовых ракет-носителей для выведения в космос всех видов полезных нагрузок, за исключением тех, которые требовали присутствия человека. До катастрофы с "Челленджером" в январе 1986 г. фактически весь арсенал военных и гражданских космических аппаратов, включая аппараты НАСА, предназначался для доставки в космос на борту "Спейс Шаттла".
Трагический урок "Челленджера" привел стратегов космической политики к выводу об ошибочности ориентации на многоразовые системы ракетно-космического транспорта. Ослабленный ракетный флот одноразовых носителей США не смог справиться с реализацией программы запусков космических аппаратов - часть американских спутников в то время перебазировалась на европейский носитель "Ариан". Это была вынужденная мера. Остаются все же совершенно неясными выводы из этой печальной истории, кроме главных выводов о необходимости повышения надежности и безопасности пилотируемых систем. Почему в то время тень нависла над многоразовыми системами - источником аварии стал не элемент средств возврата корабля, а твердотопливный ускоритель первой ступени "Спейс Шаттла".
НАСА и Министерство обороны Соединенных Штатов разработали на период до конца столетия планы использования семейства одноразовых носителей, надеясь вывести в космос большое количество различных полезных нагрузок с помощью ракет таких типов, как "Атлас", "Дельта", "Пегас" и "Титан". Разработка усовершенствованных вариантов ракет-носителей этих типов, однако, рассматривалась как создание парка носителей "промежуточного" поколения и в основном на базе существующих технологий.
Ракета-носитель "Титан-4", обладающая примерно такими же возможностями, как и система "Спейс Шаттл", предназначалась для доставки в космос основной массы перспективных тяжелых полезных нагрузок военного назначения. По своим энергетическим характеристикам "Титан-4" без верхней ступени (третьей) дает возможность выводить на низкую околоземную орбиту 17,7 т полезного груза. Тот же носитель, но с усовершенствованными твердотопливными ускорителями, выводит более 22 т. "Титан-4" с разгонной третьей ступенью выводит на геостационарную орбиту 2359 кг, "Титан-4" - "Центавр" выводит 4127 кг, а тот же комплекс с у совершенствованными стартовыми ускорителями - 6124 кг.
По весовым параметрам выводимого полезного груза на околоземную низкую орбиту последние модификации "Титана-4" сравнимы с "Протоном". Однако отечественный "Протон" нынешней конструкции не имеет возможности выводить на геостационар такие грузы, какие может современный "Титан-4". Для достижения характеристик такого же уровня требовалась глубокая модернизация "Протона".
В основе одноразового носителя - твердотопливные стартовые ускорители, история применения которых не менее поучительна. Весной 1991 г. на испытательном стенде базы ВВС Эдвардз взрыв опытного образца нового твердотопливного ускорителя СРМУ (SRMU) вызвал серьезную озабоченность законодателей, и при формировании бюджета на 1992 финансовый год первоначально намеченные средства были сокращены на треть и ставился вопрос о прекращении работ по созданию нового ускорителя. Был предоставлен год на завершение наземной отработки ускорителя по просьбе ВВС и фирмы "Мартин Мариетта". По окончании работ с твердотопливными двигателями начались плановые запуски... В августе 1993 г. ускорители взорвались при пуске ракеты-носителя "Титан". Начались поиски решений применения жидкостных ускорителей и доведения твердотопливных "до ума".
Запуском первого из военных спутников связи нового поколения типа "Милстар" в августе 1994 г. возобновилось использование носителей "Титан-4". Этот пуск стал первым после завершившегося взрывом запуска 1993 г. Впервые была запущена транспортная система на базе "Титана-4", включавшая в качестве третьей ступени ракету "Центавр". Работа всех двигателей - двух боковых твердотопливных стартовых ускорителей с тягой по 730 т, жидкостных двигателей первой ступени с тягой 250 т и второй ступени с тягой 48,2 т - была устойчивой. Ракета в этой структуре вывела аппарат массой 5 т на стационар.
Однако история требовала выводов. В национальной системе целесообразно существование транспортных средств разнотипной структуры. Это связано с тем, что в случае возникновения аварийного исхода при любом пуске программа полетов не должна страдать от потери времени на выяснение степени влияния проявившегося дефекта на оставшиеся ракеты или системы. Программа должна выполняться носителями других типов, если такая подстраховка допустима экономически. При этом космические аппараты не должны быть жестко привязаны к одному носителю.
В 1987 г. под руководством НАСА и ВВС США была начата разработка универсальной ракеты-носителя с изменяемой в широких пределах грузоподъемностью, которая осуществляется по программе АЛС (ALS - Advanced Launch System - передовая транспортная система). В 1989 г. был завершен концептуальный анализ системы ракет-носителей и в начале девяностых годов велись работы на этапе предварительного проектирования с таким расчетом, чтобы к середине последнего десятилетия приступить к полномасштабной разработке.
Универсальные ракеты-носители, разрабатываемые в Соединенных Штатах, имеют множество модификаций, различающихся по грузоподъемности. Все эти модификации ракет связаны между собой единым принципом конструктивной компоновки, осуществляемой на основе двухступенчатой схемы с продольным расположением блоков первой ступени вокруг центрального блока второй ступени. Модульная компоновка дает возможность осуществить серийное производство однотипных компонентов, создавая монотонность при многообразии вариантов ракет-носителей.
Тяжелые ракеты-носители, способные доставлять на орбиту полезные грузы большой массы, неизменно находились в планах перспективных разработок США. Первой тяжелой ракетой была ракета-носитель "Сатурн-5". После завершения программы полета человека на Луну на время разработки системы "Спейс Шаттл" образовалось некоторое затишье в рождении различных проектов тяжелых носителей. Дело в том, что с появлением космического многоразового транспорта, который способен выводить на орбиту и возвращать на Землю спутники всех систем массой до 29,5 т, предполагалось перекрыть экономически эффективной транспортной системой всю целевую программу Америки запусков космических аппаратов.
В свое время ракеты семейства ракет-носителей "Сатурн" были способны осуществлять широкий круг транспортных операций в околоземном и дальнем космическом пространстве. Возможны были запуски лунных орбитальных космических аппаратов, пилотируемых лунных кораблей, солнечных и межпланетных зондов и даже межпланетных космических аппаратов с посадкой на поверхность планеты. Транспортная система "Спейс Шаттл" такой широкой возможности не имеет. С тех пор и по сегодняшний день идет поиск эффективного решения проблемы тяжелых носителей. Разработчики теперешних программ это делают под девизом "большая ракета-носитель - это значит дешевая ракета". Полагали, что если этот принцип будет воплощен в реальность, то в области освоения человеком космоса откроются новые широкие возможности.
Существовало несколько направлений в решении проблемы тяжелых носителей в США. Одни проповедовали возвращение к классическим ракетам и, в частности, к мощным ракетам "Сатурн", так как надежность этих аппаратов проверена. На сегодня они являются самыми мощными ракетами из когда-либо созданных человеком. Подчеркивалось сторонниками этого направления, что все инфраструктуры, необходимые для создания ракет "Сатурн", сохранена. Монументы американской космической славы могут вновь возродиться к жизни, сначала сосуществуя с многоразовой системой для выведения на орбиту спутников или крупных грузов в автоматическом режиме, а затем заменяя их для выполнения длительных орбитальных полетов. Эти два варианта, полагали сторонники этого направления, смогут сосуществовать в течение одного-двух десятилетий, начиная с конца двадцатого века, пока не будет введен в эксплуатацию перспективный воздушно-космический самолет.
Второе направление связано с использованием созданного мощного производственного и эксплуатационного космического комплекса многоразовой системы "Спейс Шаттл". Программа разработки такого носителя - беспилотной модификации "Спейс Шаттла" - "Шаттл-С" привлекательна тем, что быстрее, чем любые другие направления, решает проблемы запуска и сборки на орбите элементов космической станции "Фридом". Над этой программой работали фирмы "Мартин Мариетта", "Рокуэлл интернэшнл" и "Юнайтед текнолоджи корпорейшн". Как полагают разработчики, такая тяжелая грузовая система могла быть создана к середине 90-х годов.
Ракета-носитель отличается от штатного пилотируемого варианта тем, что вместо орбитального корабля используется грузовой контейнер, в котором на низкую орбиту из Центра Кеннеди может быть выведен полезный груз массой 68 т. При некотором усовершенствовании твердотопливных ускорителей, форсировании жидкостного двигателя ССМЕ обеспечивается выведение полезного груза до 71 т.
Программа на основе "Шаттла-С" с меньшим риском обеспечивает ранний ввод в эксплуатацию ракеты при меньших начальных затратах на разработку. Однако стоимость пуска такой ракеты, по оценке американских специалистов, будет выше, чем стоимость пуска ракет-носителей тяжелого класса новой разработки.
Разработка новых ракет-носителей тяжелого класса - это третье направление в поиске рациональных решений в программе создания транспортных систем. Несколько лет назад НАСА задумало создать базу данных по возможным запросам, связанным с использованием будущих транспортных космических систем. В нее были внесены результаты исследований по программе полетов на Луну и Марс. По результатам исследований, все полезные грузы, необходимые для материального обеспечения лунной экспедиции, были отнесены в разряд грузов, которые должны выводиться на околоземную орбиту с помощью тяжелых носителей грузоподъемностью 68 т, полезные грузы для марсианского аванпоста должны выводиться носителем грузоподъемностью 136 т. Для полетов на Луну планировалось до трех пусков в год, начиная с 2002 г. Для одновременной реализации лунной и марсианской программ потребуется осуществлять ежегодно 2-4 пуска ракеты-носителя грузоподъемностью 136 т или до 10 пусков 68-тонного носителя.
В проектных разработках особо учитывались современные требования по снижению стоимости доставки полезного груза на орбиту, повышения надежности и безопасности полетов. Все это означало, что разработчикам придется изыскивать новую технологию. Уже не являлись незыблемыми такие требования, как изящность проекта, высокие энергетические характеристики маршевых двигателей. На первый план выдвигались структуры и схемы, обеспечивающие минимум общих затрат на транспортную систему.
Анализ результатов проработок различных вариантов ракет-носителей этого класса позволяет отметить общие черты. Это, прежде всего, параллельная, а не последовательная работа ступеней ракет-носителей, частичное многоразовое использование. Предусматривается прямое выведение полезного груза на опорную орбиту без участка довыведения. Используются жидкостные, а не твердотопливные ускорители первой ступени. Применение водорода для маршевых двигателей с газогенераторным циклом, а не безгазогенераторным или замкнутым циклами. В плане повышения живучести ракеты обеспечивается возможность продолжения полета при отказе одного из маршевых двигателей.
Одновременно с работами по программе тяжелых носителей проводились работы по маршевым двигателям для ускорителей и центрального блока. В течение августа 1989 г. с фирмами "Аэроджет", "Пратт-Уитни" и "Рокетдайн" были заключены контракты для этих целей.
Для центрального блока и ускорителя был выбран кислородно-водородный двигатель СТМЕ, работающий по газогенераторному открытому циклу, с давлением в камере сгорания 158 атм. Тяга 263 т в вакууме. Надежность 0,99 при доверительности 0,9. При многоразовом исполнении рабочий ресурс составит 15 штатных полетов. Проверку выполнения всех требований к двигателю предполагалась провести огневыми испытаниями в 1996 г.
У американских специалистов сложилось убеждение, что из трех возможных схем работы двигателей - по замкнутому циклу, по газогенераторной схеме с открытым циклом и по безгазогенераторной схеме - наиболее приемлемы двигатели с газогенераторным циклом разомкнутой схемы, типичными представителями которой являются двигатели Ф-1, Джей-2 и Эйч-1 фирмы "Рокетдайн". В целом по этому направлению, как и для всех, характерна незавершенность проектных исследований по ракетам тяжелого класса и неопределенность ситуации, связанной с уровнем финансирования перспективного плана работ.
Тяжелый носитель, названный "Шаттл-С" (С - грузовой), находящийся в стадии разработки, способен вывести полезную нагрузку массой около 45,4 т на низкую околоземную орбиту. Носитель "Шаттл-С" использует такие компоненты "Спейс Шаттла", как подвесной топливный отсек, твердотопливные ускорители и основные жидкостные ракетные двигатели ССМЕ. Орбитальный корабль заменен беспилотным отсеком полезной нагрузки. Носитель "Шаттл-С" должен совершать полеты с полезными нагрузками различных типов, выводя на орбиты или суборбитальные траектории межпланетные аппараты, осуществляя развертывание на околоземных орбитах научных платформ, обеспечивая запуск космических аппаратов на геостационарную орбиту с использованием верхней ступени "Центавр" или других межорбитальных транспортных аппаратов или ракетных блоков, сборку и снабжение орбитальной космической станции. Требования, предъявляемые в рамках этой программы, включают резкое увеличение грузоподъемности и грузопотока по трассе "Земля-орбита".
Усовершенствованные твердотопливные ускорители при использовании на "Шаттле-С" позволят увеличить грузоподъемность носителя на 4,5-5,4 т и довести ее до величины приблизительно 68 т. Для удовлетворения требований по полетам к Луне и Марсу подходят два варианта базового носителя "Шаттл-С" с отсеком полезной нагрузки увеличенного объема.
Основными требованиями к проекту, повлиявшими на конфигурацию носителя, были минимальная стоимость разработки и возможность обеспечения первого полета в 1995 г. В результате не предполагалось вносить в конструкцию подвесного топливного отсека, стартовых твердотопливных ускорителей и жидкостных двигателей ССМЕ:, а также никаких изменений в предстартовые операции, кроме уже используемых и отработанных в процессе многочисленных пусков челнока. Применение оборудования, проверенного в полетах "Спейс Шаттла", позволяет использовать имеющиеся системы обслуживания и технические средства. Требование по обеспечению высокой надежности привело к сохранению конфигурации с тремя двигателями ССМЕ, что обеспечит продолжение полета носителя на участке выведения даже при отказе одного двигателя.
Носитель "Шаттл-С" рассматривался как основной элемент новой национальной транспортной космической системы. В результате, требования к перспективному носителю были разделены на два направления: создание баз на Луне и на Марсе. Рассматриваемая базовая конфигурация носителя "Шаттл-С" сможет удовлетворить только самые минимальные потребности по массе и диаметру полезных нагрузок, которые требуются для выполнения полетов к Луне и Марсу. Для выполнения транспортных операций класса "Земля - орбита" по этой программе предлагалось разработать три варианта носителя с увеличенным диаметром обтекателя отсека полезных нагрузок:
- носитель увеличенной грузоподъемности, до 81,6 т;
- носитель грузоподъемностью около 68 т;
- носитель грузоподъемностью 54,4 т.

Плотность криогенных топлив, как жидкого кислорода, так и жидкого водорода, обеспечивает среднюю плотность груза - порядка 240 кг/м3отсека.
Разрабатывались два базовых варианта транспортировки баков с топливом:
- сборка из нескольких баков (для полета на Луну);
- единый топливный бак, требующий проведения заправочных операций на орбите.
Для реализации этих предложений необходимо было увеличение грузоподъемности базового варианта носителя на 9-13,6 т, что могло быть выполнено за счет использования усовершенствованных двигателей и облегченного транспортного отсека.
Однако повышение грузоподъемности носителя до 90,7 т и выше и увеличение диаметра отсека полезной нагрузки до 10 м и длины свыше 30 м привело к невозможности использования данной конфигурации носителя с асимметричным расположением груза. Дальнейшее увеличение возможностей носителя привело к необходимости существенного изменения пусковых сооружений, мобильной пусковой платформы, здания вертикальной сборки, корпуса подготовки и оборудования в Космическом центре имени Кеннеди.
Третий вариант усовершенствования конструкции носителя требовал продолжения увеличения диаметра грузового отсека до 9,15 м и длины до-30,5 м. Этот объем давал возможность установки в нем космических аппаратов с плотностью компоновки ниже 32 кг/м3 и массой 54,4 т.
Как показали исследования, средняя плотность полезных грузов, рассчитанная на базе уже встречающихся конструкций аппаратов и предварительных результатов будущих экспедиций на Луну и Марс, удовлетворяют общим требованиям, предъявляемым к новому носителю.
Груз по плотности можно разбить на две категории: нагрузки малой плотности (48-112 кг/м3) и нагрузки высокой плотности (256-1024 кг/м3). Полезные нагрузки разрабатываются в расчете на их выведение в грузовом отсеке "Спейс Шаттла" диаметром около 4,6 м. Большие размеры отсека позволяют выводить в космос грузы малой плотности из сверхлегких материалов, поскольку в этом случае масса аэродинамических тормозных устройств будет сравнительно небольшой. Для определения объема грузового отсека была выбрана плотность до 48 кг/м3. Большая плотность полезного груза имеет место при доставке на орбиту топлива, криогенные же топлива с минимальной плотностью обеспечивают максимальный удельный импульс. Максимальная плотность груза была выбрана на уровне 240 кг/м3.
Плотность выводимого груза является основополагающим фактором при определении габаритов носителя. Базовый вариант носителя "Шаттл-С" обеспечивает размещение в своем грузовом отсеке нагрузки плотностью 160 кг/м3. Такая нагрузка соответствует отсеку длиной 25 м. Увеличение грузоподъемности носителя без увеличения объема грузового отсека не будет соответствовать требованиям по размещению увеличенной полезной нагрузки в прежнем объеме. Увеличение длины и объема грузового отсека не только повышает инертную массу носителя, но также увеличивает потери, связанные с возрастанием аэродинамического сопротивления на участки выведения. Это приводит к ухудшению характеристик носителя.
После предварительного анализа было отобрано три базовых варианта. Первым является вариант корабля-заправщика, в котором 68 т криогенного топлива. Второй вариант обеспечивает размещение грузов плотностью 80 кг/м3. Третий вариант предназначен для размещения 59 т нагрузки.
Носитель "Шаттл-С" может быть также использован в качестве средства дублирования "Спейс Шаттла" в тех случаях, когда необходимо более, чем вдвое, увеличить грузоподъемность носителя при создании новых систем космического мониторинга Земли и новых платформ на геостационарной орбите. Этому способствует малый риск разработки и низкая стоимость перспективного носителя большой грузоподъемности, который будет служить дополнением к "Спейс Шаттлу" и станет необходимым для удовлетворения любых потребностей по транспортным операциям вплоть до первого десятилетия XXI века.
Управление исследований НАСА сделало вывод, что для осуществления марсианской экспедиции требуются тяжелые ракеты-носители, способные вывести на низкую околоземную орбиту объекты массой около 140 т. Аналогично для осуществления лунной экспедиции необходим космический аппарат массой до 67 т, выведение которого можно осуществить с помощью ракеты типа "Шаттл-С". Для уменьшения масштабов сборочных работ в космосе требуется грузоподъемность в диапазоне 144-150 т. Эта величина является "граничной точкой" для практических разработок. Для достижения подобной грузоподъемности нет необходимости в создании нового носителя, так как такие носители будут использоваться достаточно редко, скажем, несколько раз в год. Низкая стоимость разработки может быть достигнута модификацией существующих носителей.
На базе "Шаттла" была разработана концепция нового носителя, получившего название "Шаттл-Z". Новый носитель может быть пригоден для осуществления экспедиции на Марс и к другим планетам, для вывода объектов на геостационарную орбиту или для выполнения других программ, требующих для своего осуществления больших энергетических затрат для выведения на высокие орбиты и имеющих в составе космического аппарата большие разгонные блоки-ступени, с помощью которых обеспечивается требуемая скорость для перемещения по заданным траекториям.
Полная "полезная нагрузка", которая выводилась на орбиту с помощью ракеты-носителя, всегда рассматривалась как совокупность космического аппарата и разгонного блока. Так как масса "марсианских" или "лунных" жидкостных разгонных блоков в 4-5 раз больше, чем масса самого космического аппарата, грузоподъемность ракеты-носителя должна быть соответственно больше, чем собственная масса космического аппарата.
Концепция "Шаттла-Z" концентрируется вокруг двойного использования разгонного блока, функционирующего так же, как третья ступень системы "Шаттл" с заменой орбитального самолета на контейнер, содержащий упомянутый разгонный блок и космический аппарат. Базовый пакет носителя состоит из твердотопливных ускорителей, подвесного бака и связки двигателей ССМЕ, форсированных таким образом, чтобы носитель разгонял объект до суборбитальной скорости. После этого начинает работать "марсианский" разгонный блок, который обеспечивает необходимое приращение скорости для вывода объекта на орбиту. В результате масса, выведенная на орбиту, значительно превосходит ту, которая могла бы быть выведена с помощью одного носителя, и это достигается за счет использования топлива, которое космический аппарат расходует для перехода с околоземной орбиты на высокоэнергетическую заданную траекторию.
Следующим шагом осуществляется запуск одного или нескольких одинаковых "Шаттлов-Z" с топливными баками в качестве полезной нагрузки, их встреча и стыковка с космическим аппаратом на околоземной орбите и дозаправка баков разгонного блока. После этого разгонный блок готов для выведения космического аппарата на заданную траекторию.
По существу, эффект от подобного объединения космического аппарата и ускорителя обеспечивается двойным использованием разгонного блока, который является как частью космического аппарата, так и частью ракеты-носителя. Так как разгонный блок должен быть выведен на орбиту как часть космического аппарата, "верхняя ступень" ракеты-носителя как бы отсутствует.
Предварительные проработки показывают впечатляющие летные характеристики носителей "Шаттл-Z".
Несколько позднее НАСА развернуло работы по созданию семейства мощных ракет-носителей большой грузоподъемности в рамках нового проекта НЛС (NLS - National Launch System). Основное внимание в нем было сосредоточено на разработке нового кислородно-водородного двигателя СТМЭ для этих ракет-носителей, которые в перспективе предполагается усовершенствовать для проведения запусков пилотируемых космических аппаратов. Первые пуски этих ракет-носителей предусматривалось осуществить в 2002 г.
К середине 1992 г. совместные исследования НАСА и Министерства обороны США в объеме 350 проектов и проектные поисков, направленных на снижение транспортных расходов при выведении на орбиту полезных грузов, сформулировали базу для принятия решения о создании национальной транспортной космической системы, состоящей из ряда беспилотных, однако пригодных для пилотируемых полетов ракет-носителей.
На базе имеющихся наработок с учетом возможности, заложенной в структуре "Энергии" - универсальности и модульного принципа построения - был разработан перспективный ряд ракет-носителей. Ряд подразделяется на два направления: грузовые одноразовые ракетно-космические транспортные системы и системы многоразового применения.
За годы космической эры автоматические аппараты, посланные человеком в различные области Солнечной системы, провели огромный объем исследований планет, их спутников, ближнего и дальнего космоса. Результаты этих исследований внесли значительный вклад в развитие наук о Вселенной. Лунная экспедиция и пилотируемые орбитальные станции открыли новую страницу в освоении космоса. Однако космос хранит еще много тайн, которые ждут своих открывателей.
Современный уровень развития ракетно-космической техники позволяет перейти от исследований отдельных доступных областей космоса к систематическим исследованиям практически любого уголка Солнечной системы. Достижения многих стран в области создания средств доставки, космических аппаратов, электроники делают реальным переход от исследований в космосе к промышленной деятельности в интересах науки, техники, медицины, коммерции.
С этого начинались все наши доклады о развитии концепции исследований Луны, планет. Солнца, а также астрофизическим исследованиям с использованием новых возможностей, которые возникли в связи с созданием новой тяжелой универсальной ракетно-космической транспортной системы "Энергия". Оценить эти новые возможности можно исходя из того, что "Энергия" обеспечивает выведение в космос космических аппаратов, масса которых в 5 раз больше тех, которые могут быть выведены самыми мощными из эксплуатируемых носителей - "Протоном" и "Титаном-34Д", и в 3 раза больше выводимых "Спейс Шаттлом".
Мировой ракетно-космический флот состоит в основном из одноразовых баллистических систем. Ракеты-носители СССР распределились в зависимости от программ и планов заинтересованных ведомств. Располагая носителями "Космос", "Циклон", "Восток-Молния-Союз", "Протон", страна в состоянии была вывести от 1,5 до 20 т на опорную орбиту и до 3,2 т на геостационарную орбиту. Ракета-носитель "Энергия" расширила эти возможности до 100 т на низкой круговой орбите и 18 т на геостационаре. Перспективный ряд ракет-носителей позволяет на основе блочно-модульного принципа построить семейство, заполнить пробелы и сделать непрерывной цепочку возможностей по выносу на опорную орбиту массы полезного груза.
Ряд открывается ракетой "Зенит" грузоподъемностью до 15,7 т при использов

Наши рекомендации