Система аккумулирования электроэнергии для обеспечения надежности работы ЭЭС

Система аккумулирования электроэнергии для обеспечения надежности работы ЭЭС

Н. Л. Новиков

Д.т.н., проф., Заместитель Научного руководителя АО “НТЦ ФСК ЕЭС ”

А.Н. Новиков

Главный специалист АО “НТЦ ФСК ЕЭС ” Отдел разработки и внедрения систем управления жизненным циклом

Сравнительные характеристики различных накопителей энергии

Основные типы накопителей

Существует много различных классификаций накопителей электрической энергии. Наиболее удобной с практической точки зрения представляется классификация на электрохимические и физические накопители энергии. Первые – преобразуют электрическую энергию в химическую энергию веществ, вторые – в механическую энергию.

К электрохимическим накопителям энергии относятся аккумуляторные батареи, накопители энергии на основе молекулярных конденсаторов и др. Все типы электрохимических накопителей подключаются к сети через преобразователи (инверторы).

К физическим накопителям электроэнергии в основном относятся два вида комплексов:

  • кинетические накопители энергии (маховики);
  • гравитационные накопители энергии (ГАЭС).

Рассмотрим основные виды электрохимических накопителей энергии.

Свинцово-кислотные аккумуляторы

Преимущества:Отработанная технология. Невысокий саморазряд – 3-10% в мес.

Относительно простая система обслуживания.

Недостатки:

Низкая удельная энергоемкость 35 Втч/кг. КПД – 85% . Количество циклов – до 2000.

Жесткие требования по экологической безопасности при утилизации

Натрий-серные аккумуляторы

Преимущества:Большая емкость - 700 Втч/кг. Высокий КПД – 85%.

Относительно большой ресурс – 5000 циклов. Высокое быстродействие – 1 мсек .

Относительно низкий саморазряд. Экологическая безопасность + герметичные элементы

Налажено серийное производство + опыт эксплуатации более 15 лет

Недостатки: Относительно высокая стоимость. Высокая рабочая температура .

Ванадий-редоксные (проточные) аккумуляторы

Преимущества :

Высокая емкость благодаря большому запасу электролита 80 Втч/кг. КПД – 80%.

Большое количество циклов – >10 000 . Длительный срок службы – 10-20 лет.

Высокое быстродействие – 1 мсек

Недостатки:

Высокая стоимость, отсутствие серийного производства

Единичные установки в мире (4 МВт/1,5 часа макс.)

Литий-ионные аккумуляторы

Преимущества: Наибольшая плотность энергии из всех разновидностей аккумуляторов – как объемная, так и весовая. Быстрый процесс заряда батарей - до 90% емкости за 30-40 мин. Низкий показатель саморазряда - до 5% в месяц. Могут утилизироваться без предварительной переработки.

Недостатки:Возможность взрыва при механическом повреждении или перезарядке аккумулятора . Достаточно быстрое старение аккумулятора - большинство аккумуляторов резко снижают свои характеристики при хранении или использовании более 5 лет .

Для создания аккумуляторных батарей требуется сложная система управления батареей

Относительно высокая стоимость.

Литий-ионные аккумуляторы

В настоящее время литий-ионные аккумуляторы являются одним из самых массовых промышленных продуктов в мире в качестве перезаряжаемых химических источников тока (ХИТ). Их количество, типы и сферы применения постоянно увеличиваются. Транспорт, системы безопасной эксплуатации важнейших объектов являются теми сферами применения, в которых литий-ионные батареи активно вытесняют традиционные ХИТ.

Эта система демонстрирует длительный срок службы, большую цикличность, высокую надежность и безопасность, широкий температурный диапазон применения, высокие удельные энергетические и мощностные характеристики, низкий саморазряд.

При применении литий-ионных аккумуляторов можно рассчитывать на повышение энергоемкости и мощности батарей при сохранении малой массы и объема, на достижение более высокого напряжения, снижение саморазряда. Преимуществом этих батарей перед аналогами является герметичность, отсутствие выделения газа, большой показатель цикличности и срок службы.

Литий-ионные батареи допускают форсированный заряд и разряд. Их эксплуатация требует установки средств электронного контроля и управления зарядом и разрядом (СКУ) как на уровне аккумуляторов, так и батареи в целом.

В связи с тем, что применение литий-ионных аккумуляторов позволяет использовать параллельно-последовательное соединение аккумуляторов в батарею по принципу модульной конструкции, на базе одного типоразмера литий-ионного аккумулятора можно осуществлять разработку и изготовление батарей в широком диапазоне электрической емкости и напряжения. Литий-ионные аккумуляторы не допускают переразряда и перезаряда и должны быть защищены от короткого замыкания. Для поддержания высокой разрядной емкости в течение всего периода эксплуатации необходимо выравнивание напряжений последовательно соединенных аккумуляторов, компенсирующее разброс характеристик в период эксплуатации.

От характеристик материалов, используемых для изготовления литий-ионных аккумуляторов и батарей различного назначения (активных катодных и анодных материалов, электролитов, добавок в электролит, сепарационных материалов, электропроводных добавок в активные массы электродов, водных и неводных связующих) определяющим образом зависят технические характеристики конечных изделий.

Для производства литий-ионных аккумуляторов применяются активные электродные материалы способные обратимо внедрять ионы лития. Перспективные катодные и анодные материалы выбираются по удельным энергетическим и мощностным характеристикам, по ресурсным характеристикам, температурному диапазону эксплуатации, стоимостным показателям.

В настоящее время литий-ионные аккумуляторы с электрохимической системой литированный смешанный оксид никеля-кобальта-марганца (NMC) / углерод (графит) (C) наиболее часто используются при изготовлении как высокомощных так и энергоёмких аккумуляторов, что обусловлено оптимальным соотношением цена/качество. Удельная энергия для высокоэнергоемких литий-ионных аккумуляторов с использованием этого типа электродных материалов составляет от 160 до 200 Втч/кг и от 120 до 150 Втч/кг для высокомощных аккумуляторов. Удельная мощность у высокомошных аккумуляторов достигает 2÷4 Вт/кг. Температурный диапазон работоспособности при разряде для лучших образцов этого типа аккумуляторов составляет -40 ÷60оС, при заряде от 0 до 60оС. Высокой мощностью также обладают литий-ионные аккумуляторы с положительным электродом на основе литий-марганцевой шпинели (LMO) и отрицательным электродом на основе не графитизированного углеродного материала (Soft Carbon (SC) или Hard Carbon (HC)).

Реже применяют аккумуляторы c катодом на основе литированного фосфата железа (LFP) у которых показатель удельной энергии по массе не превышает 110 Втч/кг, а температурный диапазон ограничивается разрядом при -20оС. Однако они конкурентны по стоимости Втч со свинцово-кислотными аккумуляторами.

Несколько компаний производят литий-ионные аккумуляторы с отрицательным электродом на основе титаната лития (LTO). Данные аккумуляторы имеют относительно низкую удельную энергию (порядка 70 Втч/кг), имеют существенно более высокую, чем у конкурентов стоимость Втч, однако им свойственна способность заряжаться большими токами при низких температурах (заряд при температуре -40°С).

Количество полных циклов заряд-разряд у литий-ионных аккумуляторов ведущих производителей составляет от 1000 до 5000, сроки хранения и эксплуатации 5 – 8 лет.

Для всех типов литий-ионных аккумуляторов характерны свои среднеразрядные напряжения: NMC/C (3,6-3,7В), LFP/C (3,2-3,3В), LMO/HC или SC (3,6В), NMC(LMO, LCO)/LTO (2,3-2,4В). Также существенно отличается и форма разрядных кривых. Например, аккумуляторы электрохимическими системами NMC/графит и LMO/неграфитизированный углерод имеют практически одинаковое среднеразрядное напряжение. За счёт более существенного изменения потенциала неграфитизированного углерода в процессе введения/выведения лития из структуры напряжение аккумулятора снижается/увеличивается сильнее от степени заряженности литий-ионных аккумуляторов. В этой связи формы зарядных/разрядных кривых литий-ионных аккумуляторов для систем NMC/графит и LMO/неграфитизированный углерод будут отличаться и это должно учитываться при разработке систем контроля батарей.

Выбор используемых при производстве литий-ионных аккумуляторов активных материалов, технологий и конструкций определяется техническими и экономическими требованиями к накопителю электрической энергии, в состав которого входит аккумуляторная батарея.

Различные производители выпускают литий-ионные аккумуляторы различной конструкции. Например, широко применяют цилиндрические аккумуляторы. Ряд компаний отдают предпочтение литий-ионным аккумуляторам в корпусе из ламинированной фольги. Имеются производители применяющие призматические литий-ионные аккумуляторы в пластмассовых и металлических корпусах.

Отечественный и зарубежный опыт позволяет разрабатывать и изготавливать литий-ионные батареи требуемой электрической емкости и напряжения, работающие при различной токовой нагрузке с характерным временем разряда от нескольких минут до сотен часов.

Ведущие мировые производители в настоящее время изготавливают базовые батарейные модули (БМ) на базе высокоэнергоемких или высокомощных литий-ионных аккумуляторов различного конструктивного исполнения. С использованием базовых БМ и магистрально-модульного принципа создаются накопители электрической энергии требуемой электрической емкости, мощности и напряжения.

Конструкция базового БМ включает в себя последовательно и/или параллельно соединенные литий-ионные аккумуляторы, систему контроля и управления и корпус. Конструкция БМ может предусматривать воздушное или жидкостное охлаждение. При создании стационарных накопителей в основном используется воздушное охлаждение. Для работы при пониженных температурах может использоваться система обогрева

В настоящее время ведущие мировые производители выпускают широкий спектр БМ в различном конструктивном исполнении для энергоустановок транспортного и стационарного назначения, отличающихся номинальной ёмкостью и энергией, номинальным напряжением и мощностью.

Номинальное напряжение БМ (обычно 48 В) выбирается из условий удобства эксплуатации и определяется количеством последовательно соединённых аккумуляторов (кратно среднеразрядному напряжению аккумулятора). Требуемая величина ёмкости БМ достигается выбором величины электрической емкости базового аккумулятора и/или числом параллельно соединённых аккумуляторов. Мощность и удельная энергия определяются типом используемых аккумуляторов. Для комплектации БМ, в зависимости от требований к скорости разряда, применяются высокоэнергоемкие или высокомощных аккумуляторы.

На базе БМ изготавливают накопители энергии с различной энергией и мощностью в диапазоне от нескольких кВт до десятков МВт. БМ повышенной мощности (ток разряда 4С, 6С) используются при изготовлении источников бесперебойного питания (ИБП), обеспечивающих энергоснабжение постоянным и переменным током потребителей. Данный тип ИБП способен обеспечить аварийное и резервное питание в течение 10-15 минут до включения аварийных ДВС.

Ряд производителей предлагает законченные решения энергоустановок с накопителями энергии в широком диапазоне энергоемкости и мощности на базе БМ с использованием литий-ионных аккумуляторов. Использование магистрально-модульного принципа при создании накопителей и преобразователей электрической энергии большой энергоемкости и высокого напряжения на базе литий-ионных аккумуляторов в настоящее время является наиболее прогрессивным и широко используемым решением для изделий стационарного и транспортного применения.

Суперконденсаторы

Современные суперконденсаторы с рабочим напряжением 2,7…2.85В на основе нанопористых углеродных электродов и органических электролитов широко применяются в технике, благодаря высокой удельной энергии (5…7 Втч/кг), мощности (до 110 кВт/кг) и наработке – более 500 тыс. циклов в течение 100 тыс. часов. Современные суперконденсаторы (электрохимические двойнослойные конденсаторы) способны заряжаться и разряжаться большими токами, работоспособны в широком диапазоне температур (-50 ÷65оС), имеют линейную зависимость степени заряженности от напряжения, герметичные, необслуживаемые. Они не имеют конкурентов среди других накопителей электрической энергии при работе в условиях импульсных нагрузок во временном диапазоне 10-2 ÷1 с.

Исключительно высокая надёжность современных суперконденсаторов на основе нанопористых углеродных электродов и органических неводных электролитов, в сравнении с другими типами суперконденсаторов (так называемыми гибридными и «молекулярными» суперконденсаторами) связана с отсутствием электрохимических реакций, протекающих на электродах в процессе зарядки и разрядки. В электрохимических двойнослойных конденсаторах энергия на электродах накапливается за счёт диффузии и адсорбции ионов в двойном электрическом слое на поверхности электродов под воздействием электрического поля и отсутствуют параллельные электрохимические реакции.

Основные усилия разработчиков современных суперконденсаторов направлены на увеличение удельной энергии и удельной мощности накопителей энергии этого типа.

Вид Параметр Натрий-серные Ванадий-редоксные Свинцово-кислотные Цинк-бромидные Литий-ионные
Напряжение разомкнутой цепи (НРЦ) (В) 2.08 1.4 2.0 1.8 3.4-3.9
Удельная энерго-емкость Вт ч/кг -
Вт ч/л -
КПД (%) 90-95
Температура (С0) 280-350 40-80 5-50 20-50 -20 - +45
Электролит твердый композит (керамика+алюминий) Раствор оксида ванадия в воде Серная кислота Раствор бромида цинка в воде Не водные (спиртовые) растворы солей лития или полимерные (твердые) электролиты
Вспомогательное оборудование (операции) Нагрев Насос Добавка воды Насос не требуется

Компактный тор

Система аккумулирования электроэнергии для обеспечения надежности работы ЭЭС - student2.ru

Удельная стоимость СПИНЭ с тороидальной обмоткой энергоёмкостью 10ГВтчас составляет 300 $/кВтчас. что экономичней ГАЭС.

Система аккумулирования электроэнергии для обеспечения надежности работы ЭЭС - student2.ru

АЭС с СПИНЭ 10ГВтчас(рис Клименко Е .Ю)

Система аккумулирования электроэнергии для обеспечения надежности работы ЭЭС

Н. Л. Новиков

Д.т.н., проф., Заместитель Научного руководителя АО “НТЦ ФСК ЕЭС ”

А.Н. Новиков

Главный специалист АО “НТЦ ФСК ЕЭС ” Отдел разработки и внедрения систем управления жизненным циклом

Наши рекомендации