Статический расчет арки

Расчет арки выполняется на следующие сочетания нагрузок: постоянной и снеговой; постоянной, снеговой, ветровой и от загрузочной тележки (см. рис. 50).

Опорные реакции от постоянной нагрузки на всем пролете

VА = VВ = qрнl/2; H = qрнl2/(8f).

Опорные реакции от снеговой нагрузки по пролету в пределах уклона кровли α = 50°:

VА = VВ = qрснxс; H = qрснxс(l - xс)/(2f),

где xс - горизонтальная проекция участка кровли с уклоном до 50°, равная 5,9 м (см. рис. 50).

Опорные реакции от снеговой нагрузки на половине пролета:

VА = qрснxс(l + xс)/(2l); VВ = qрснxс(l - xс)/(2l); H = VВl/(2f).

Реакции от ветровой нагрузки:

вертикальные

VА = [P1a1 - P2(a2 + a3) - P4a4]/l;

VВ =[P1a4 - P2(a3 + a2) - P4a1]/l;

горизонтальные

HА = (VА0,5l - P1b1 + P2b2)/f;

HВ = (VВ0,5l + P4b1 + P3b2)/f,

где P1, P2, P3, P4 - равнодействующие соответствующих зон ветрового давления; a1, a2, a3, a4 - плечи равнодействующих относительно опорных шарниров; b1, b2 - то же, относительно ключевого шарнира. Вычислим плечи равнодействующих ветрового давления.

a1 = asin (3,37φ1 - β1) = 16,4sin 21°8' = 16,4×0,3606 = 5,91 м;

a2 = asin (0,87φ1 - β1) = 16,4sin 5°10' = 16,4×0,0901 = 1,48 м;

a3 = rsin (4,13φ1) = 36,4sin 26°22' = 36,4×0,4441 = 16,2 м;

a4 = rsin (1,63φ1) = 36,4sin 10°25' = 36,4×0,1808 = 6,6 м;

b1 = rsin (3,37φ1) = 3,64sin 21°31 = 36,4×0,3668 = 13,35 м;

b2 = rsin (0,87φ1) = 36,4sin 5°33 = 36,4×0,0967 = 3,52 м,

где

Статический расчет арки - student2.ru

β = arctg [(x0 - l)/y0] = arctg [(34 - 24)/13] = 37°34';

ψ = 90° - (φ0 + φ) = 90° - 20° 55' - 31°54' = 37°11';

β1 = β - φ = 37°34' -37°11' = 0°23'.

Таблица 31

Вид нагрузки и нагружения Нагрузка, кН/м Опорные реакции, кН
VА VВ HА HB
Постоянная, равномерно распределенная 2,37 28,4 28,4 10,7 10,7
Постоянная сосредоточенная   11,1 11,1 6,9 6,9
Снеговая, равномерно распределенная:          
в пределах уклона кровли до 50° 3,6 21,1 21,1 11,9 11,9
на левом полупролете   13,1
Временная сосредоточенная - 18,8 18,8
Ветровая (слева) - -7,4 -7 -10,4 1,4

Таблица 32

№ сечения Координаты, м Изгибающие моменты от вертикальных нагрузок, кН×м
x y постоянной gn снеговой на левой полуарке Pс снеговой на правой полуарке Pс снеговой на всем пролете Pс временной Pвр постоянной Pп
1,65 3,69 -0,5 -9 -9,1 -19,9 -7,1
3,72 7,19 5,6 -13,4 -7,1 -23,6 -8,3
6,15 10,44 17,6 17,9 -13,4 5,5 -11,8 -3,8
8,92 13,39 15,4 22,2 -8,9 14,6 15,9 6,1

Нагрузки и опорные реакции приведены в табл. 31, а изгибающий момент от вертикальных нагрузок - в табл. 32 и вычислены по формуле Mx = M0x - Hyx, где M0 - изгибающий момент простой балки от рассматриваемой нагрузки.

Вычисление изгибающих моментов, кН×м, от ветровой нагрузки приведено в табл. 33 и выполнено по формулам

в левой полуарке Mn = VАxn - HАyn ± Mbn;

в правой полуарке M'n = VВxn - HВyn ± Mb'n,

где Mbn и Mb'n - моменты от ветровой нагрузки, расположенной слева и справа от сечения n:

Mb1 = -P1rsin (φ1/2)3,26; Mb'1 = P4rsin (φ1/2)/3,26;

Mb2 = -2P1rsin φ1/3,26; Mb'2 = 2P4rsin φ1/3,26;

Mb3 = -3P1rsin (1,37φ1)/3,26; Mb'3 = 3P4rsin (1,37φ1)/3,26;

Mb4 = -P1rsin (2,37φ1) + 0,74P2rsin (0,37φ1)/2;

Mb'4= P4rsin (2,37φ1) + 0,74P3rsin (0,37φ1)/2;

Mb5 = -P1b1 + P2b'2; Mb'5 = P4b1 + P3b2.

Таблица 33

№ сечения VАxn -HАyn Mbn Mn VВxn -HВyn Mbn' Mn'
-12,1 38,6 -5,4 21,1 -11,5 -5,2 3,1 -13,6
-27,5 74,9 -21,6 25,8 -26 -10,1 12,4 -23,7
-45,5 108,6 -44,5 18,0 -43,1 -14,6 25,6 -32,1
-66 139,3 -76,5 -3,2 -62,4 -18,7 53,8 -27,3
-88,8 166,4 -77,3 -84 -22,4

Таблица 34

№ сечения Изгибающие моменты, кН×м, от Расчетные величины моментов, кН×м
от собственного веса снеговой нагрузки ветровой нагрузки веса оборудования
слева справа полная слева справа постоянные временные
-0,5 -9 -9,1 21,1 -13,6 -7,1 -19,9 22,5/-41,4
5,6 -13,4 -7,1 25,8 -23,7 -8,3 -23,6 40,3/-50,9
17,6 17,9 -13,4 5,5 18,6 -32,1 -3,8 -11,8 50,5/-46,8
15,4 22,2 -8,9 14,6 -3,2 -27,3 6,1 15,9 53,4/-17,2

В табл. 34 приведены значения изгибающих моментов от постоянной, снеговой, ветровой нагрузки и от веса технологического оборудования, а также расчетные значения моментов при неблагоприятных сочетаниях постоянных и временных нагрузок. При учете одновременно двух и более временных нагрузок вводился коэффициент сочетании nс = 0,9.

Как видно из табл. 34, наибольший положительный момент в сечении 4, а отрицательный - в сечении 2. Для расчетных сечений 4 и 2 определим значения нормальных сил по формуле

N = Qоsin φn + Hcos φn.

Сечение 4

x = 8,92 м; φ4 = 46°27'; sin φ4 = 0,725; cos φ4 = 0,69.

Для вертикальных нагрузок определяем значения балочных поперечных сил от:

собственного веса Qо1 = 28,4 - 8,92×2,37 = 7,3 кН;

постоянной сосредоточенной нагрузки Qо2 = 11,1 кН;

снеговой нагрузки на левом полупролете Qо3 = (13,1 - 3,6×2,82)0,9 = 2,7 кН;

временной сосредоточенной нагрузки Qо4 = 30×0,9 = 27 кН.

Суммарное значение балочной поперечной силы в сечении 4 Qо = 48,1 кН.

Суммарный распор от тех же загружений

H = 10,7 + 6,9 + 0,9(6 + 18,8) = 39,9 кН.

Нормальная сжимающая сила от вертикальных нагрузок будет равна: Nр = (48,1×0,725 + 39,9×0,69) = 62,4 кН.

Нормальная сила от ветровой нагрузки определяется по формуле

Nb4 = VАsin φ4 + P1sin (2,37φ1) + 0,74P2sin (0,37φ1) + HАcos φ4.

По табл. 31 находим VА = -7,4 кН; HА = -10,4 кН.

Остальные входящие в формулу величины равны:

P1 = 8,71 кН; P2 = -11,1 кН; 2,37φ1 = 15°8';

sin (2,37φ1) = 0,261; 0,37φ1 = 2°22'; sin (0,37φ1) = 0,0413,

тогда с учетом коэффициента сочетания нагрузок

Nb4 = -0,9(-7,4×0,725 + 8,71×0,261 - 0,74×11,1×0,0413 - 10,4×0,69) = 9,5 кН.

Суммарное значение нормальной силы в сечении 4 равно:

N4 = Nр + Nb4 = -62,4 + 9,5 = -52,9 кН.

Сечение 2

x2 = 3,72 м; φ2 = 33°41'; sin φ2 = 0,555; cos φ2 = 0,832.

Для этого сечения получаем аналогично сечению 4:

поперечную балочную силу Q°2 = 69,5 кН;

суммарный распор H = 39,9 кН;

нормальную силу от вертикальных нагрузок Nр = -71,8 кН;

нормальную силу от ветровых нагрузок Nb2 = 4 кН;

суммарную нормальную силу N2 = -67,8 кН.

Поскольку при определении коэффициента ξ, согласно СНиП II-25-80, п. 6.27, необходима сжимающая сила в ключе, то определим ее так же, как и для сечений 4 и 2.

Сечение 5. X5 = 12 м; φ5 = 52°50'; sin φ5 = 0,797; cos φ5 = 0,604.

Получаем:

поперечную балочную силу Q°5 = -7,3 кН;

суммарный распор H = 39,9 кН;

нормальную силу от вертикальных нагрузок Nр = -18,2 кН;

нормальную силу от ветровых нагрузок Nb5 = -12,3 кН;

суммарную нормальную силу N5 = -30,6 кН.

Расчетные усилия в сечения 2 и 4:

M2 = -50,9 кН×м; N2 = -67,8 кН;

M4 = +53,4 кН×м; N4 = -52,9 кН.

Подбор сечения арки

Для изготовления арок принимаем пиломатериал из древесины сосны 2 сорта толщиной 3,3 см. Коэффициент надежности по назначению γn = 0,95.

Оптимальная высота поперечного сечения арки находится в пределах (1/40 - 1/50)l = (1/40 - 1/50)2400 = 60 - 48 см.

Согласно СНиП II-25-80, пп. 3.1 и 3.2, коэффициенты условий работы древесины будут при h ≤ 60 см, δсл = 3,3 см и rк/a = 3640/3,3 = 1103 > 500 mи =1,2; mб = 0,96; mсл = 1, mгн = 1; соответственно расчетное сопротивление сжатию и изгибу

Rс = Rи = 1,2×0,96×1×1×13/0,95 = 15,76 МПа.

Предварительное определение размеров поперечного сечения арки производим так же, как в предыдущем примере, из кубического уравнения относительно высоты сечения

При β = h/b = 5,5; ξ = 0,65; h = 571 мм; b = 104 мм.

Принимаем поперечное сечение арки b ´ h = 110 ´ 594 мм из 18 слоев толщиной 33 мм.

Расчет арки на прочность выполняется в соответствии с указаниями СНиП II-25-80, п. 4.17, формула (28) аналогично предыдущему примеру:

N/Fрасч + Mд/Wрасч = 52,9×103/65,3×103 + 73,5×106/6,47×106 = 0,81 + 11,36 = 12,17 < 15,76 МПа,

т.е. прочность сечения достаточна.

Статический расчет арки - student2.ru

Рис. 51. Коньковый (а) и опорный (б) узлы стрельчатой арки

1 - стальная пластина 12 ´ 100 ´ 200; 2 - болты диаметром 16 мм; 3 - уголок № 20 длиной 200 мм; 4 - три слоя рубероида; 5 - опорная пластина 12 ´ 300 ´ 610; 6 - железобетонный фундамент

Расчет на прочность сечения с отрицательным моментом не требуется, так как он меньше положительного; достаточно проверить это сечение на устойчивость плоской формы деформирования по формуле (33), п. 4.18, СНиП II-25-80.

Верхняя кромка арки раскреплена прогонами кровли с шагом 1,5 м, соединенными со связевыми фермами, откуда

lр = 2×150 < 140b2/(hmб) = 140×112/(59,4×0,96) = 312 см,

т.е. имеет место сплошное раскрепление при положительном моменте сжатой кромки, а при отрицательном - растянутой, следовательно, показатель степени n = 1 в формуле (33) СНиП II-25-80. Опуская промежуточные вычисления по определению основных коэффициентов φм, φ и вспомогательных коэффициентов Kжм, Kпм и KпN, которые выполняются по аналогии с предыдущим примером, получим

N/(FбрφRс) + Mд/(WбрφмRи) = 67,8×103/(653×102×0,6097×15,76) + 71,4×106/(0,9069×6,47×106×15,76) = 0,11 + 0,77 = 0,88 < 1.

Таким образом, условие устойчивости выполнено и раскрепления внутренней кромки в промежутке между пятой и коньковым шарниром не требуется.

Конструктивные решения конькового и опорного узлов показаны на рис. 51.

Рамы

6.44. Дощатоклееные рамы могут применяться в зданиях различного назначения с утепленными или неутепленными ограждающими конструкциями, из плит или прогонов с рулонными, асбестоцементными или другими кровлями.

Рекомендуемые схемы однопролетных деревянных клееных рам представлены в табл. 1.

6.45. Расчет рам производится по правилам строительной механики с учетом требований СНиП II-25-80, пп. 4.17, 4.18, 6.28 – 6.30 при следующих схемах загружения:

а) постоянная и временная снеговая нагрузки на всем пролете;

б) постоянная на всем пролете и временная снеговая на половине пролета нагрузки;

в) по схемам а и б в сочетании с временной ветровой нагрузкой.

В трехшарнирных рамах со стойками высотой до 4 м расчет на ветровую нагрузку может не производиться.

6.46. Проверку нормальных напряжений следует производить в карнизном узле трехшарнирных рам ломаного очертания; в месте максимального момента криволинейной части гнутоклееных рам.

В других сечениях ригеля и стойки проверка нормальных напряжений не требуется, если высота сечения ригеля в коньке составляет св. 0,3 высоты сечения ригеля в карнизном узле, а высота сечения стоек рам в пяте - св. 0,4 высоты в карнизном узле.

6.47. В прямолинейных участках элементов рам переменного сечения уклон внутренней кромки относительно наружной допускается не более 15 %.

6.48. Рамы ломаного очертания с соединением в карнизном узле на нагелях по окружности (рис. 52) могут применяться при высоте стоек св. 4 м.

Расчет нагельного соединения в таких рамах выполняется в приведенной ниже последовательности. Определяются:

а) жесткость соединения

c = cсрn,

где cср = 128 кН/см - средняя жесткость нагеля; n - число нагелей;

б) податливость соединения

δ = 1/c;

в) смещение стойки относительно ригеля

Δ = δNэкв.

где Nэкв = 2M/Д; M - изгибающий момент в карнизном узле рамы; Д - диаметр окружности, по которой расставлены нагели;

г) средняя несущая способность одного нагеля Nср = cсрΔ;

д) максимальная несущая способность одного нагеля

Nмакс = Nсрkр ≤ 2T, (49)

где kр = 1,3 - коэффициент, учитывающий неравномерность распределения усилий между нагелями в соединении; T - минимальная несущая способность нагеля на один условный срез, определяемая по СНиП II-25-80, п. 5.13.

Статический расчет арки - student2.ru

Рис. 52. Карнизный узел дощатоклееной трехшарнирной рамы ломаного очертания с соединением на цилиндрических нагелях

1 - стойка; 2 - ригель; 3 - направление волокон; 4 - нагели; 5 - начальное положение нагеля; 6 - положение нагеля после поворота

При невыполнении условия (49) необходимо увеличить диаметр окружности расстановки нагелей, если это не потребует увеличения размеров сечения элементов рамы, найденных из расчета по прочности и устойчивости;

е) несущая способность всего нагельного соединения

Nсрn ≥ Nэкв.

В узле должно быть поставлено не менее 4 болтовых нагелей из их общего числа.

Расстановка нагелей по окружности в карнизном узле рамы должна осуществляться по рис. 52, диаметр их следует принимать не более 20 мм.

6.49. Клеефанерные рамы, состоящие из дощатых поясов и фанерных стенок, подкрепленных ребрами жесткости (рис. 53), относятся к облегченным конструкциям. В таких рамах рекомендуется использовать преимущественно двухстенчатое двутавровое сечение.

При конструировании клеефанерных рам волокна наружных слоев шпона рекомендуется располагать параллельно внешнему контуру стоек и ригеля. Ребра жесткости в прямолинейных частях элементов рам устанавливаются в створе стыков фанерных стенок и, если необходимо, в промежутках.

Расчет клеефанерных рам следует выполнять в соответствии со СНиП II-25-80.

Статический расчет арки - student2.ru

Рис. 53. Клеефанерная трехшарнирная рама с гнутоклееными вставками в карнизных узлах

Пример 1. Запроектировать дощатоклееную раму пролетом 18 м, шагом 3 м неутепленного складского здания.

Район строительства г. Нарва (Ленинградская обл.). Кровля из волнистых асбестоцементных листов, укладываемых по прогонам сечением 70 ´ 150 мм с шагом 1,5 м. Для элементов рамы (гнутоклееного двускатного ригеля и прямолинейных стоек) используются сосновые пиломатериалы 2-го и 3-го сорта толщиной слоев δ = 33 мм.

Соединение элементов конструкций осуществляется с помощью вклеенных арматурных стержней и деталей стального проката.

Ригель рамы принят переменного сечения с уклоном верхних граней i1 = 0,25, а нижних - i2 = 0,2; стойки рамы - постоянного сечения, соединенные с ригелем шарнирно и защемленные в фундаментах (рис. 54).

Нагрузки на раму

Постоянная нагрузка gн = 0,266 кН/м2 Временная снеговая нагрузка Pнсн = 1 кН/м2. Собственный вес ригеля равен:

gнсв = (gн + Pнсн)/[1000/(Kсвl) - 1] = (0,266 + 1)/[1000/(7,5×17,64) - 1] = 0,194 кН/м2.

Статический расчет арки - student2.ru

Рис. 54. Схема рамы с нагрузками

Статический расчет арки - student2.ru

Рис. 55. Гнутоклееный ригель рамы

Погонные расчетные нагрузки на ригель составляют:

постоянная

g = (gн + gнсв)nbр = (0,266 + 0,194)/1,1×3 = 1,52 кН/м;

временная снеговая

Pсн = Pнснnсbр = 1×1,6×3 = 4,8 кН/м.

Снеговую нагрузку на половине пролета рамы не учитывают, так как в рамах данного типа максимальные усилия возникают от загружения по всему пролету.

Скоростной напор ветра для II района q0 = 0,35 кН/м2, а расчетная погонная ветровая нагрузка

Pib = q0kcinbbр,

где k = 0,65 - коэффициент, учитывающий изменение скоростного напора в зависимости от высоты и типа местности, определяется по СНиП II-6-74, табл. 7.; ci - аэродинамический коэффициент, принимаемый по СНиП II-6-74, табл. 8;

c = +0,8; c1 = -0,228; c2 = -0,4; c3 = -0,5;

nb = 1,2 - коэффициент перегрузки;

bр = 3 м - шаг рам.

Коэффициент c1 определен по интерполяции при

H/l = 5,45/17,64 = 0,308 и γ = 14,2°;

P1b = 0,35×0,65×0,8×1,2×3 = 0,66 кН/м;

P2b = 0,35×0,65×0,5×1,2×3 = 0,41 кН/м;

P3b = 0,35×0,65×0,4×1,2×3 = 0,33 кН/м; (правая половина пролета);

P4b = 0,35×0,65×0,228×1,2×3 = 0,19 кН/м; (левая половина пролета).

В целях упрощения расчета рамы ветровую нагрузку, действующую на ригель, принимаем усредненной интенсивности по всему пролету P3b, = 0,26 кН/м. Схема нагрузок на раму дана на рис. 54. Сечение стоек принимаем 140 ´ 363 мм, их гибкость в плоскости рамы

λ = l0/(0,289hk) = 545×2,2/(0,289×36,3) = 114,4 < [λ] = 120,

а отношение hk/b ≈ 2,5, что удовлетворяет рекомендациям по деревянным клееным колоннам.

Сечение ригеля (рис. 55) подбираем по методике расчета гнутоклееных балок переменной высоты согласно пп. 6.16 - 6.19:

γ = arctg i1 = arctg 0,25 = 14°;

φ = arctg i2 = arctg 0,2 = 11,3°.

Средняя часть ригеля длиной l1 = 0,2l = 0,2(18 - 0,36) = 3,53 м имеет криволинейный участок. Радиус кривизны равен:

r0 = l1/(2sin φ) = 3,53/(2sin 11,3°) = 9,01 м;

r0/δ = 9,01/0,033 = 274 > 250, т.е. mгн = 1.

Ширину ригеля принимаем равной ширине стойки b = 140 мм, а высоту h = 1200 мм, что составляет 1/15l, тогда высота h1 = 1022 мм, а высота на опоре h0 = 581 мм.

Наши рекомендации