ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ - это промышленное предприятие, на котором производится электрическая, а в некоторых случаях и тепловая энергия
В зависимости от вида природных источников энергии (твердое топливо, жидкое, газообразное, ядерное, водная энергия, энергия ветра и т.д.), различают тепловые электростанции (ТЭС), конденсационные электростанции (КЭС), атомные электростанции (АЭС), гидроэлектростанции (ГЭС), ветроэлектростанции (ВЭС), теплоэлектроцентрали (ТЭЦ) и другие.
Для каждого типа станции разрабатывается своя технологическая схема превращения первичной энергии в электрическую, а для ТЭЦ - и в тепловую. Технологическая схема характеризует последовательность основного процесса производства электрической и тепловой энергии, оснащение основным оборудованием преобразовательного процесса - автономными реакторами или паровыми котлами, паровыми или гидравлическими турбинами, электрическими генераторами. Она имеет многочисленное и разнообразное вспомогательное оборудование, и в современных условиях сильно механизирована и автоматизирована.
Оборудование располагается в специальных зданиях, на открытых площадках и под землей. Агрегаты связаны между собой как в тепловой, так и в электрической частях. Эти связи отражаются соответственно в технологических, тепловых и электрических схемах. Кроме того, на станции предусматривают многочисленные коммуникации вторичных устройств - систем управления, контроля, защиты, блокировок, сигнализации и т.д.
Станция имеет также развитые транспортные связи: внешние (с железнодорожной станцией, населенными пунктами, рабочим поселком) и на территории самой станции (между отдельными зданиями и сооружениями для перемещения оборудования, материалов, топлива как в процессе сооружения, так и во время эксплуатации).
Для выдачи электрической и тепловой энергии в энергосистему и к местным потребителям предусматривается необходимое количество электрических линий и тепловых магистралей.
Особенностью гидроэлектростанций являются мощные гидротехнические сооружения, необходимые для получения напора воды и пропуска расхода водотока.
Более 80% электроэнергии в СНГ вырабатывается тепловыми электростанциями на органическом топливе, остальная - гидравлическими и атомными электростанциями. Использование для производства электроэнергии других, кроме гидроэнергетических возобновляемых источников энергии - солнце, ветер, морские приливы, геотермальные воды и др. - пока ограничено только опытными или опытно-промышленными электроустановками.
Однако, следует отметить, что такое процентное распределение доли электроэнергии вырабатываемой различными типами электростанций не одинаково для каждого государства СНГ. Так, на Украине доля электроэнергии вырабатываемой атомными электростанциями составляет к настоящему времени 60% и в дальнейшем предполагается эту долю увеличивать.
По типу первичного двигателя ТЭС подразделяется на паротурбинные, газотурбинные и дизельные. В последнее время находят применение комбинированные схемы с паротурбинными и газотурбинными установками. Газотурбинные и парогазовые ТЭС пока имеют ограниченное применение, хотя и обладают с позиции энергосистемы весьма ценным свойством повышенной маневренности по сравнению с обычными паротурбинными ТЭС. Дизельные электростанции в энергосистемах в настоящее время для выработки электроэнергии почти не используются. Они находят применение в качестве автономных источников для резервирования электроснабжения особо ответственных потребителей, в частности отдельных потребителей собственных нужд АЭС, а также для производства электроэнергии в зонах, где отсутствует централизованное электроснабжение от энергосистемы.
Паротурбинные ТЭС являются основными электростанциями большинства энергосистем. Они подразделяются на конденсационные (КЭС), предназначенные только для производства электроэнергии, с турбинами чисто конденсационного типа и теплофикационные (ТЭЦ), предназначенные для комбинированного производства электроэнергии и тепла в виде горячей воды или пара низких параметров. КПД ТЭЦ может достигать 50 - 70% по сравнению с 35 - 40% для лучших КЭС.
На современных КЭС работают энергоблоки котел - турбина - генератор -трансформатор мощностью 150, 200, 300, 500, 800 и 1200 МВт. Наиболее крупные КЭС имеют мощность 3,6 млн.кВт: Запорожская и Углегорская (Донбасс). Размещение КЭС в принципе определяется сравнительной эффективностью передачи электроэнергии и перевозки топлива.
Мощность и состав агрегатов ТЭЦ определяются параметрами тепловых нагрузок. Наиболее крупные агрегаты имеют мощность 100, 135, 175 и 250 МВт и, как и на КЭС, выполнены по блочной схеме. В связи с нецелесообразностью дальней передачи тепла (50 км и более) ТЭЦ обычно размещаются в непосредственной близости от городов и промышленных предприятий (например Симферопольская ТЭЦ).
ГЭС предназначены для выработки электроэнергии и сооружаются часто в составе гидротехнических комплексов, одновременно решающих задачи улучшения судоходства, ирригации, водоснабжения, защиты от паводков. Агрегаты для каждой ГЭС конструируются индивидуально применительно к характеристикам выбранного створа. Для повышения маневренности энергосистем начата реализация программы строительства серии крупных гидроаккумулирующих электростанций, участвующих в выравнивании суточного графика ТЭС и АЭС двойной мощностью (покрытие пика нагрузки при разряде и заполнение ночного провала за счет заряда).
Атомная энергетика в последние годы развивается быстрыми темпами. От первой Обнинской АЭС мощностью 5 МВт атомная энергетика прошла путь до АЭС мощностью 6000 МВт (Запорожская АЭС - самая крупная АЭС в Европе). За время прошедшее от пуска первой АЭС созданы многочисленные конструкции ядерных реакторов: корпусных водо - водяных, канальных графитовых и тяжеловодных, а также реакторов с газовым охлаждением. На основе этих реакторов на тепловых нейтронах и происходит широкое развитие атомной энергетики на Украине.
Одновременно ведутся работы по промышленному исследованию и техническому совершенствованию более перспективных и выгодных реакторов на быстрых нейтронах, воспроизводящих ядерное горючее в цикле производства тепла при основной реакции расщепления. В г.Шевченко на Каспийском море уже несколько лет работает опытная АЭС с реактором на быстрых нейтронах БН-350, имеющим тепловую мощность 1ГВт и рассчитанным на выработку электрической энергии при мощности генератора 150 МВт и на одновременное опреснение 120 тыс.тонн морской воды в сутки.
Однако широкое строительство реакторов на быстрых нейтронах станет возможным после решения ряда сложных вопросов повышения надежности реакторов до уровня, достигнутого в реакторах на тепловых нейтронах.
Теоретически в связи с малыми объемами расходуемого топлива АЭС целесообразно размещать вблизи центров потребления электроэнергии. Однако, практически, с учетом конкретных условий выбора площадок для строительства и в первую очередь условий технического водоснабжения, АЭС оказываются удаленными от крупных энергоузлов с передачей электроэнергии на сотни километров.