Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля

Дано. Исходные данные по внешней нагрузке, общие габариты конструкции, характеристики грунта основания и засыпки, интенсивности давления грунта засыпки (Pq = 11,7 кПа, Pg =

45,75 кПа, Pug = 117,96 кПа, P'ug = 122,4 кПа, Puq = 30,17 кПа),

интенсивности давления грунта основания на подошву фундаментной плиты (pmin= 0, pmax= 278,81 кПа), c0 = 1,23 м по примеру 2. Сопряжение вертикального ограждающего элемента осуществляется в щелевой паз фундаментной плиты (рис. 6).

Материал фундаментной плиты - бетон класса В15 (Rb = 8,5 МПа = 8,5 × 103 кПа, Rbt = 0,75 МПа = 7,5 × 102 кПа, gb2 = 1), арматура класса AIII (Ps = Rsc = 365 МПа = 3,65 × 105 кПа, Rsw = 290МПа = 2,9 × 105 кПа).

Требуется произвести расчет и армирование щелевого паза.

Изгибающий момент и поперечную силу от горизонтального давления грунта в месте сопряжения вертикальной плиты с фундаментной (y = 4,5 м) определяем по формуле (41)

M1-1=Pgy3/6h + Pq(y - ya)2/2 = 45,75×4,53/6×6 + 11,7(4,5 - 0)2/2

=234,26 кН×м;

Q1 - 1 = Pgy2/2h + Pq(y - ya) = 45,75×4,52/2×6 + 11,7(4,5 - 0) = 129,85 кН.

Изгибающий момент и поперечную силу в сечении фундаментной плиты (x3 = 2,2 м) определяем по формулам (45) и (46):

M3 - 3 = pmax(3c0 - b + x3)3/18c0 - Pugx32/2 - Puq(x3 - x)2/2

-x33(P'ug -P'ug)/6(b-t) = 278,81 (3×1,23 -

-3,9+2,2)3/18×1,23-117,96×2,22/2-30,17(2,2-0)2/2-2,23(122,4-117,96)/ 6(3,9-0,7) = -261,69 кН×м;

Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля - student2.ru

Рис. 6. К расчету уголковой подпорной стены составного сечения

а - конструктивная схема; б - схема загружения конструкции стены

Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля - student2.ru

Рис. 7. К расчету уголковой подпорной стены составного сечения

а - эпюры моментов; б - эпюры поперечных сил

Q3 –3 = pmax(3c0 - b + x3)2/6c0 - Pugx3 - Pugx3 - Puq(x3 - x) - x32(P'ug

- P'ug)/2(b - t) =

= 278,81(3×1,23 - 3,9 +2,2)2/6×1,23 - 117,96×2,2 - 30,17(2,2 - 0) -

2,22(122,4 -

-117,96)/2(3,9 - 0,7) = -179,63 кН.

Эпюры моментов и поперечных сил см. на рис. 7.

Определение усилий в щелевом пазе

Горизонтальные и вертикальные составляющие (рис. 8) внутренней пары определяем по формулам п. 6.22:

Pr = Mt - 1sin2a/0,75l = 234,26sin253°30'/0,75×0,9 = 224,23 кН;

Pв = M1 -1sina × cosa/0,75l = 234,26sin53°30' cos 53°30'/0,75×0,9 = 165,76 кН,

где tga = 0,75l/h = 0,75×0,9/0,5 = 1,35; a = 53°30'.

Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля - student2.ru

Рис. 8. К расчету щелевого паза Сечение 4 - 4

M4 - 4 = (Pr+ Q1 - 1)0,9l = (224,23×0,15×0,9 +165,76×0,25 = 71,71

кН×м;

Q4 - 4 = Pr+ Q1 - 1 = 224,23 + 129,85 = 354,08 кН.

Сечение 5 - 5

M5 - 5 = Pr0,15l + Pвz = 224,23×0,15×0,9 + 165,76×0,25 = 71,71

кН×м;

Q5 - 5 = Pr= 224,23 кН;

N5 - 5 = Pв = 165,76 кН.

Сечение 6 - 6

M6 -6 = (Pr+ Q1 - 1)(0,9l + 0,5l1) + Pвh - b32(pmax+ p3/2)/3 = 224,23 +

+129,85)(0,9×0,9 + 0,5×0,6) + 165,76×0,5 - 1,22(278,81 + 188,14/ 2)/3 =

=296,93 кН×м,

где p3 = (1 - b3/3c0)pmax= (1 - 1,2/3×1,23)278,81 = 188,14 кПа; Q6

- 6= Pв - (pmax+ p3) b3 /2 = =165,76 - 27,81 +188,14)1,2/2 = -144,41 кН; N6 - 6 = Pr+ Q1 - 1 = 224,23 + 129,85 = 354,08 кН.

Расчет правой стенки паза

Расчет производим так же, как и расчет изгибаемого консольного элемента (рис. 9).

1. На действие поперечной силы Q4 - 4 = 354,08 кН:

а) проверяем выполнение условия (1) в соответствии с формулой (72) СНиП 2.03.01-84*:

Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля - student2.ru

(1)

где jw1 = 1 принимаем как для бетонного сечения; jb1 = 1 - bPb

= 1 - 0,01×8,5 = 0,915; b = 0,01 - для тяжелого бетона; h0 = (0,5 + 0,3)/2 - 0,04 = 0,36 м - средняя высота сечения в пределах длины наклонного сечения, принятая равной с = 2×30 = 60 см.

354,08 кН < 0,3×1×0,915×8,5×103×1×0,36 = 839,97 кН (условие

выполнено);

б) проверяем выполнение условия (2) в соответствии с формулой

(84) СНиП 2.03.01-84* по обеспечению прочности сечения на действие поперечной силы железобетонного элемента без поперечного армирования:

Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля - student2.ru

(2)

где jb4 = 1,5 - для тяжелого бетона; jn= 0 - нормальная сила отсутствует.

354,8 кН > 1,5×1×7,5×102×1×0,362×0,6 = 243 кН.

Условие не выполнено, поэтому требуется или увеличение сечения, или поперечное армирование сечения хомутами.

Принимаем поперечное армирование сечения в виде хомутов из арматуры Æ 6 АIII с шагом вдоль паза и = 200 мм (Asw= 0,283×5 = 1,415 см2).

Усилия в хомутах на единицу длины определяем исходя из формулы (83) СНиП 2.03.01-84*

qsw³ jb3(1 +jn+ jf)Rbtb/2, где jb3 = 0,6 - для тяжелого бетона; jf= 0;

qsw= 0,6×1×7,5×102×1/2 = 225 кН/м.

Шаг поперечных стержней по высоте паза определяем по формуле

S = RswAsw/qsw= 2,9×105×1,415×10-4/225 = 0,182 м.

Принимаем шаг стержней 0,15 м = 150 мм.

Проверяем выполнение условия (75) СНиП 2.03.01-84*:

Q £ Qb+ Qsw+ Qs,inc,

где Qb= jb2(1 + jf+ jn)Rbtbho /c; jb2 = 2 - для бетонного сечения;

Qb= 2×1×7,5×102×10,362/0,6 = =324 кН;

Qsw= qswc0,

где

Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля - student2.ru

Отсюда Qsw= 225×0,93 = 209,25 кН; Qs,inc= 0. Отгибы в сечении не предусмотрены.

Таким образом, Q = 354,08 кН < 324 +209,25 = 533,25 кН (условие выполнено).

Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля - student2.ru

Рис. 9. К расчету правой стенки щелевого паза

Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля - student2.ru

Рис. 10. К расчету левой стенки щелевого паза

Прочность сечения правой стенки паза на действие поперечной силы обеспечена.

2. На действие изгибающего момента M4 - 4 = 286,8 кН×м: aM= M4 - 4/Rbbh02 = 286,8/8,5×103×1×0,512 = 0,13,

где h0 = 0,55 - 0,44 = 0,51 м.

По табл. 18 Пособия по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84*) (М.: ЦИТП, 1986) для бетона класса В 15 и арматуры класса АIII при gb2 = 1 находим aR = 0,426.

Так как aM=0,13<aR=0,426, то сжатие арматуры по расчету не требуется.

По табл. 20 вышеперечисленного Пособия при aM=0,13 находим

v=0,93.

As = M4 - 4/Rsvh0 = 286,8/3,65×105×0,93×0,51 = 1,656×10-3 м2 = 16,56 см2.

Принимаем стержни Æ 22 АIII с шагом 200 мм (As= 19 см2).

Сжатую арматуру принимаем конструктивно Æ 12 AIII шаг 200 мм (рис. 11).

Расчет левой стенки паза

Расчет стенки производим, как расчет внецентренно растянутого элемента.

1. На действие поперечной силы Q5 - 5 = 224,23 кН при действии растягивающей силы N5 - 5 = 165,76 кН:

а) проверяем выполнение условия (1):

Q5 - 5 = 224,23 кН < 0,3×1×0,915×8,5×103×1×0,44 = 1026,63 кН,

где ho= (0,5 + 0,46)/2 - 0,04 = 0,44 м (условие выполнено); б) проверяем условие (2):

Q5 - 5 = 224,23 кН < 1,5(1 - 0,1)7,5×102×1×0,442/0,23 = 852,26 кН,

где jn= -0,2N5 - 5/Rbtbho= -0,2×165,76/7,5×102×1×0,44 = -0,1. c

= 0,23 м - длина проекции наклонного сечения на продольную ось стенки (рис. 10).

Условие выполнено, но при этом величина значения правой части неравенства превышает величину

852,26 кН > 2,5Rbtbho= 2,5×7,5×102×1×0,44 = 825 кН.

Поэтому несущую способность сечения принимаем равной 825 кН.

2. На действие изгибающего момента M5 - 5 = 71,71 кН×м и растягивающей силы N5 - 5 = 165,76 кН:

ho= 0,46 - 0,04 = 0.42 м.

Определяем эксцентриситет действия растягивающей силы

eo = M5 - 5/N5 - 5 = 71,71/165,76 = 0,432 м;

e = eo - h/2 + a = 0,432 - 0,46/2 +0,04 = 0,242 м;

e' = eo+ h/2 - a' = 0,432 + 0,46/2 - 0,04 = 0,622 м.

Так как e' = 0,622 м > ho- a' = 0,42 - 0,04 = 0,38 м, определяем необходимую площадь растянутой арматуры по значению aм, вычисленному по формуле

aм = [N5-5e - RscAs'(ho - a')]/Rbbho2 = [165,76×0,242-3,65×105×5,65×10-4 × ×(0,42 --0,04)]/

8,5×103×1×0,422 = -0,026 < 0,

где As' - принята конструктивно Æ 12AIII с шагом 200 мм (5Æ12 AIII, As' = 5,65 см2 = 5,65×10-4 м2).

Так как aм < 0, площадь сечения растянутой арматуры определяем по формуле

As = N5 - 5e'/Rs(ho - a') = 165,76×0,622/3,65×105(0,42 - 0,04) = 7,43×10-4 м2 = 7,43 см2.

Требуется на 1 м 5 Æ 14 AIII As= 7,69 см2. Однако по условиям конструирования (рис. 11), принимаем 5Æ 22 AIII (As= 19 см2).

Расчет нижнего сечения

Расчет производим, как внецентренно растянутого элемента на изгибающий момент М6-6 =296,93 кН×м и растягивающую силу N6-6 = 354,08 кН:

h0 = 0,6 - 0,04 = 0,56 м;

е0 = 296,93/354,08 = 0,839 м;

е = е0 - h/2 + a = 0,839 - 0,6/2 + 0,04 = 0,579 м;

е¢ = е0 + h/2 - a¢ = 0,839 + 0,6/2 - 0,04 = 1,099 м;

Так как е¢ = 1,099 м > h0 - а¢ = 0,56 - 0,04 = 0,52 м, определяем необходимую площадь растянутой арматуры по значению aм, вычисленную по формуле

Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля - student2.ru

где А¢s- принятая площадь сжатой рабочей арматуры подошвы (5Æ12АIII; А¢s= 5,65 см2 = =5,65×10-4 м2).

Так как aм > 0, площадь сечения растянутой арматуры определяем с учетом сжатой арматуры по формуле

As = (xbh0Rb + N6-6)/0,7Rs + A¢sRsc/Rs = (0,04×1×0,56×8,5×103 + 354,08)/0,7×3,65×105 + 5,65×10-4×1= =26,96×10-3 м2 = 26,96

см2,

где 0,7 - понижающий коэффициент (см. п. 6.22); x - коэффициент, принятый в зависимости от aм по табл. 20 вышеприведенного Пособия.

Принимаем 5Æ28AIII с шагом 200 мм (Аs= 30,79 см2). Принцип армирования щелевого паза см. рис. 11.

Расчет сечения на действие поперечной силы не производим, так как оно заведомо проходит без хомутов по бетонному сечению (толщина сечения больше, а поперечная сила по сравнению со стенками меньше).

Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля - student2.ru

Рис. 11. Армирование щелевого паза

Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля - student2.ru

Рис. 12. Конструктивная схема подпорной стены

Пример 5. Расчет уголковой подпорной стены (с нагрузкой от подвижного транспорта)

Дано. Сборно-монолитная железобетонная подпорная стена уголкового профиля (УПС). Высота подпора грунта у = 4,5 м, глубина заложения подошвы фундамента d = 1,2 м. На поверхности призмы обрушения вдоль стены перемещается тяжелая одиночная нагрузка НГ-60 на расстояние 1,5 м от наружной грани стены. Геометрические размеры подпорной стены и схема ее загружения приведены на рис. 12. Основание подпорной стены - глинистые грунты ненарушенного сложения со следующими характеристиками (по данным инженерно- геологических исследований):

jI = 16°; jI = 16 кН/м3; сI = 21 кПа;

jII = 17°; jII = 16 кН/м3; сII = 24 кПа.

Характеристики грунта засыпки - песок мелкий:

j¢I = 30°; g¢I = 20,9 кН/м3; с¢I = 0;

j¢II = 32°; g¢II = 20,9 кН/м3; с¢II = 0.

Под подошвой фундамента подпорной стены предусматривается щебеночная подушка толщиной 0,6 м и шириной 4,2 м (на 300 мм больше подошвы фундамента в каждую сторону), имеющая следующие характеристики:

jI(s) = jII(s) = 40°; сI(S) = cII(s) = 0; gI(s) = 21

кН/м3.

Требуется проверить принятые габаритные размеры, определить величину изгибающих моментов и поперечных сил в элементах конструкций.

Определяем интенсивность давления грунта на конструкцию стены.

Угол наклона плоскости скольжения к вертикали:

Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля - student2.ru ; q0 = 30°.

Условный угол плоскости обрушения грунта принимаем: tg e = 3/5,7 = 0,526; e = 27°48¢ » 28°.

По табл. 3 прил. 2 (при d = j¢I= 30°; r = 0°; e = 28°) l = 0,33.

Эквивалентную распределенную полосовую нагрузку на поверхности засыпки от гусеничной нагрузки НГ-60 определяем по формуле (13)

q = 90/(2,5 + yatgq0) = 90/(2,5 + 1,35 tg 30°) = 27,44 кПа.

Расстояние по вертикали от поверхности грунта засыпки до границ распределения условной эквивалентной боковой нагрузки определяем по формуле

уа = а/(tg q0 + tg e) = 1,5/(tg 30°+ tg28°) = 1,35 м.

Протяжность эпюры давления определяем по формуле

уb= (b0 + 2tg q0ух)/(tg e + tg q0) = (3,3 + 2tg30°×1,35)/(tg 28°+ tg30°) = 4,38 м.

В соответствии с п. 5.7б принимаем:

yb= h - ya= 5,7 - 1,35 = 4,35 м.

Интенсивность горизонтального давления грунта на глубине у = 5,7 м, определяем по формуле (1)

Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля - student2.ru кПа.

Интенсивность горизонтального давления грунта от условной эквивалентной полосовой нагрузки определяем по формуле (10)

Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля - student2.ru кПа.

Расчет устойчивости положения стены против сдвигаСдвигающую силу Fsaопределяем по формулам (16), (17), (18): Fsa = Pgh/2 = 45,21×5,7/2 = 128,85 кН;

Fsa, q= Pqyb= 6,15×4,35 = 26,75 кН;

Fsa= Fsa, g+ Fsa, q= 128,85 + 26,75 = 155,6 кН.

Проверка устойчивости стены против сдвига (рис. 13) производится для трех случаев скольжения:

Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля - student2.ru

Рис. 13. Расчетная схема подпорной стены к примеру 5

1. Проверка устойчивости стены по контакту подошвы и щебеночной подушки - b1 = 0° (рис. 13).

Сумму проекций всех сил на вертикальную плоскость определяем по формуле (21)

Fu= Fsatg(e + jI') + gI'gf[h(b - t)/2 + td] +gItgb1b2/2 = 155,6

tg(28° +30°) +

+20,9×1,2 [5,7(3,6 - 0,6)/2 +0,6×1,2] + 0 = 481,56 кН.

Пассивное сопротивление грунта определяем по формуле (22)

Er= gIhr2lr/2 + cIhr(lr- 1)/ tgjI= 20,9×122×1/2 + 0 = 15,05 кН.

Удерживающую силу Fsrопределяем по формуле (19), с учетом п. 6.7, jI(s) = 30°, lr= 1.

Fsr = Fu tg(jI(s) - bI) + bc + Er = 481,56 tg(30° - 0°) + 0 + 15,05 = 293,1 кН.

Проверяем условие (15):

Fsa= 155,6 кН < 0,9×293,1/1,1 = 239,81 кН.

Условие удовлетворено.

2. Проверка устойчивости стены против сдвига по контакту щебеночной подушки и грунта основания (b2 = 0°).

Fu(s) =Fu + b(s)dIgI(s) = 481,56 + 4,2×0,6×21 = 534,48 кН;

Er(s) = 20,9(1,2 + 0,6)2×1/2 + 0 = 33,86 кН;

Fsr(s) = 534,48 tg(16° - 0°) + 0 33,86 = 187,1 кН.

Проверяем условие (15):

Fsa= 155,6 кН < 0,9×187,1/1,1 = 153,08 кН.

Условие удовлетворено.

3. Проверка устойчивости стены по плоскости глубинного сдвига грунта основания (b3 = =jI= 16°).

Er = gIhr2lr/2 + cIhr(lr - 1)/tgjI = 16(1,2 + 0,6 + 0,91)2×1,76/2 + 21(1,2 +

+0,6 + 0,91)(1,76 - 1)/tg16° = 254,26 кН; lr = tg2(45° + jI/2) = tg2(45° +16°/2) = 1,76;

Fsr = Fu tg(jI - b3) + bcI + Er = 0 + 3,6×21 + 254,26 = 329,86 кН.

Проверяем условие (15):

Fsa= 155,6 кН < 0,9×329,86/1,1 = 269,89 кН.

Условие удовлетворено.

Приведенный угол наклона к вертикали dIравнодействующей внешней нагрузки по контакту подошвы и щебеночной подушки:

tgdI = Fsa /Fu = 155,6/481,56 = 0,3231; dI = 18°.

sinjI(s) = sin40° = 0,642 > tgdI,

расчет прочности основания производим по формуле (26)

h* = [Fsa,g h/3 + Fsa,q(h - ya - yb/2)]/Fsa = [128,85×5,7/3 + 26,75(5,7

- 1,35 –

-4,35/2)]/155,6 = 1,95 м;

' '
M0 = Fsa[h* - tg(e + jI )(b/2 - h*tge)] + gI gf(b - t)[h(b - 4t) + 6td]/12

= 155,6[1,95 - tg (28°+ 0°)× ×(3,6/2 - 1,95tg28°] + 20,9×1,2(3,6 -

0,6)[5,7(3,6 –

-4×0,6) +6×0,6×1,2]/12 = 183,4 кН×м; e = M0/Fu = 183,4/481,56 = 0,38 м; b' = b - 2e = 3,6 - 2×0,38 = 2,84 м.

По табл. 5 при jI= 30° и dI= 18°; Ng= 3,35; Nq= 8,92; Nc= 13,72;

I c (s)
Nu= b'(Ngb'gI+Nqg 'd+N c ) = =2,84(3,35×2,84×21 +

8,92×20,9×1,2 + 0) =

=1202,75 кН;

Fu = 481,56 кН < gcNu/gn = 0,9×1202,75/1,1 = 984,07 кН.

Несущая способность щебеночной подушки под подошвой фундамента стены обеспечена.

Наши рекомендации