Лекция 9 Экспериментальное обоснование основных идей квантовой теории

План лекции:

1. Фотоэффект. Уравнение Эйнштейна.

2. Законы внутреннего и внешнего фотоэффекта.

ТЕЗИСЫ

1)Гипотеза Планка получила подтверждение и дальнейшее развитие при объяснении фотоэффекта — явления, открытие и исследование которо­го сыграло важную роль в становлении квантовой теории. Различают фотоэффект внешний, внутренний и вентильный. Внеш­ним фотоэлектрическим эффектом (фото­эффектом) называется испускание элек­тронов веществом под действием элек­тромагнитного излучения.

Фотоэф­фект обнаружен (1887 г.) Герцем. Первые фундаментальные исследова­ния фотоэффекта выполнены Столетовым (рис. 289).

Лекция 9 Экспериментальное обоснование основных идей квантовой теории - student2.ru Лекция 9 Экспериментальное обоснование основных идей квантовой теории - student2.ru

Облучая катод светом различных длин волн, Столетов установил следующие за­кономерности, не утратившие своего зна­чения до нашего времени: 1) наиболее эффективное действие оказывает ультра­фиолетовое излучение; 2) под действием света вещество теряет только отрицатель­ные заряды; 3) сила тока, возникающего под действием света, прямо пропорцио­нальна его интенсивности.

Зависимость, соответствующая двум различным освещенностям Ее катода (частота света в обоих случаях одинакова), приведена на рис. 290. По мере увеличения U фототок постепенно возрастает, т. е. все большее число фотоэлектронов достигает анода. Максимальное значение тока Iнас — фототок насыщения — опреде­ляется таким значением U, при котором все электроны, испускаемые катодом, до­стигают анода: Iнас=en, где n — число электронов, испускаемых катодом в 1 с.

Из вольт-амперной характеристики следует, что при U=0фототок не исчеза­ет. Следовательно, электроны, выбитые светом из катода, обладают некоторой на­чальной скоростью v, а значит, и отличной от нуля кинетической энергией и могут достигнуть анода без внешнего поля. Для того чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение u0. При U=U0ни один из электронов, даже обладающий при вылете из катода максимальной скоростью vmax, не может преодолеть задерживающего по­ля и достигнуть анода. Следовательно, mv2max/2=eU0, т. е., измерив задерживающее напряжение U0,можно определить максимальные зна­чения скорости и кинетической энергии фотоэлектронов.

Три закона внешнего фотоэффекта.

I. Закон Столетова: при фиксирован­ной частоте падающего света число фото­электронов, вырываемых из катода в еди­ницу времени, пропорционально интенсив­ности света (сила фототока насыщения пропорциональна энергетической осве­щенности Eе катода).

II. Максимальная начальная ско­рость (максимальная начальная кинети­ческая энергия) фотоэлектронов не за­висит от интенсивности падающего све­та, а определяется только его частотой n, а именно линейно возрастает с увели­чением частоты.

III. Для каждого вещества существует «красная граница» фотоэффекта, т. е. ми­нимальная частота n0 света (зависящая от химической природы вещества и состояния его поверхности), при которой свет лю­бой интенсивности фотоэффекта не вызы­вает.

А.Эйнштейн в 1905 г. показал, что явле­ние фотоэффекта и его закономерности могут быть объяснены на основе предло­женной им квантовой теории фотоэффек­та. Согласно Эйнштейну, свет частотой n не только испускается, как это предпола­гал Планк, но и распространя­ется в пространстве и поглощается ве­ществом отдельными порциями (кванта­ми), энергия которых e0=hn. Таким образом, распространение света нужно рассматривать не как непрерывный волно­вой процесс, а как поток локализованных в пространстве дискретных световых кван­тов, движущихся со скоростью с распро­странения света в вакууме. Эти кванты электромагнитного излучения получили название фотонов.

По Эйнштейну, каждый квант погло­щается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально интенсивности све­та. Безынерционность фотоэффекта объясняется тем, что передача энергии при столкновении фото­на с электроном происходит почти мгно­венно. Энергия падающего фотона расходует­ся на совершение электроном работы вы­хода А из металла и на со­общение вылетевшему фотоэлектрону ки­нетической энергии mv2max/2. По закону сохранения энергии,

hn=A+mv2max/2

что называется уравнением Эйнштейна для внешнего фотоэффекта.

Получим, что

n0=A/h

и есть «красная граница» фотоэффекта для данного металла. Она зависит лишь от работы выхода электрона, т. е. от химиче­ской природы вещества и состояния его поверхности. Это выражение можно записать в виде eU0=h(n-n0).

Наши рекомендации