Задача 2 Множественная регрессия и корреляция
Задачи для зачёта по эконометрике
Задача 1 Парная регрессия и корреляция
Пример. По территориям региона приводятся данные за 1991 г.
Таблица D.1
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Требуется:
1.Построить линейное уравнение парной регрессии от .
2.Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.
3.Оценить статистическую значимость параметров регрессии и корреляции с помощью -критерия Фишера и -критерия Стьюдента.
4.Выполнить прогноз заработной платы при прогнозном значении среднедушевого прожиточного минимума , составляющем 107% от среднего уровня.
5.Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.
6.На одном графике построить исходные данные и теоретическую прямую.
Решение
1.Для расчета параметров уравнения линейной регрессии строим расчетную таблицу D.2.
Таблица D.2
-16 | 12,0 | |||||||
-4 | 2,7 | |||||||
-23 | 17,2 | |||||||
2,6 | ||||||||
1,9 | ||||||||
10,8 | ||||||||
0,0 | ||||||||
0,0 | ||||||||
5,3 | ||||||||
3,1 | ||||||||
7,5 | ||||||||
-10 | 5,8 | |||||||
Итого | 68,9 | |||||||
Среднее значение | 85,6 | 155,8 | 13484,0 | 7492,3 | 24531,4 | – | – | 5,7 |
12,84 | 16,05 | – | – | – | – | – | – | |
164,94 | 257,76 | – | – | – | – | – | – |
;
.
Получено уравнение регрессии: .
С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,89 руб.
2.Тесноту линейной связи оценит коэффициент корреляции:
; .
Это означает, что 51% вариации заработной платы ( ) объясняется вариацией фактора – среднедушевого прожиточного минимума.
Качество модели определяет средняя ошибка аппроксимации:
.
Качество построенной модели оценивается как хорошее, так как не превышает 8-10%.
3.Оценку значимости уравнения регрессии в целом проведем с помощью -критерия Фишера. Фактическое значение -критерия:
.
Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы и составляет . Так как , то уравнение регрессии признается статистически значимым.
Оценку статистической значимости параметров регрессии проведем с помощью -статистики Стьюдента и путем расчета доверительного интервала каждого из показателей.
Табличное значение -критерия для числа степеней свободы и составит .
Определим случайные ошибки , , :
;
;
.
Тогда
;
;
.
Фактические значения -статистики превосходят табличное значение:
; ; ,
поэтому параметры , и не случайно отличаются от нуля, а статистически значимы.
Рассчитаем доверительные интервалы для параметров регрессии и . Для этого определим предельную ошибку для каждого показателя:
;
.
Доверительные интервалы
Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры и , находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.
4.Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит: руб., тогда прогнозное значение заработной платы составит: руб.
5.Ошибка прогноза составит:
.
Предельная ошибка прогноза, которая в случаев не будет превышена, составит:
.
Доверительный интервал прогноза:
руб.;
руб.
Выполненный прогноз среднемесячной заработной платы является надежным ( ) и находится в пределах от 131,66 руб. до 190,62 руб.
6.В заключение решения задачи построим на одном графике исходные данные и теоретическую прямую (рис. D.1):
Рис. D.1.
Варианты индивидуальных заданий
По территориям региона приводятся данные за 1991 г.
Требуется:
1.Построить линейное уравнение парной регрессии от .
2.Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.
3.Оценить статистическую значимость параметров регрессии и корреляции с помощью -критерия Фишера и -критерия Стьюдента.
4.Выполнить прогноз заработной платы при прогнозном значении среднедушевого прожиточного минимума , составляющем 107% от среднего уровня.
5.Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.
6.На одном графике построить исходные данные и теоретическую прямую.
Вариант 1
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 2
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 3
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 4
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 5
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 6
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 7
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 8
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 9
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Вариант 10
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., | Среднедневная заработная плата, руб., |
Задача 2 Множественная регрессия и корреляция
Пример. По предприятиям региона изучается зависимость выработки продукции на одного работника (тыс. руб.) от ввода в действие новых основных фондов ( от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих ( ).
Номер предприятия | Номер предприятия | ||||||
7,0 | 3,9 | 10,0 | 9,0 | 6,0 | 21,0 | ||
7,0 | 3,9 | 14,0 | 11,0 | 6,4 | 22,0 | ||
7,0 | 3,7 | 15,0 | 9,0 | 6,8 | 22,0 | ||
7,0 | 4,0 | 16,0 | 11,0 | 7,2 | 25,0 | ||
7,0 | 3,8 | 17,0 | 12,0 | 8,0 | 28,0 | ||
7,0 | 4,8 | 19,0 | 12,0 | 8,2 | 29,0 | ||
8,0 | 5,4 | 19,0 | 12,0 | 8,1 | 30,0 | ||
8,0 | 4,4 | 20,0 | 12,0 | 8,5 | 31,0 | ||
8,0 | 5,3 | 20,0 | 14,0 | 9,6 | 32,0 | ||
10,0 | 6,8 | 20,0 | 14,0 | 9,0 | 36,0 |
Требуется:
1.Построить линейную модель множественной регрессии. Записать стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат.
2.Найти коэффициенты парной, частной и множественной корреляции. Проанализировать их.
3.Найти скорректированный коэффициент множественной детерминации. Сравнить его с нескорректированным (общим) коэффициентом детерминации.
4.С помощью -критерия Фишера оценить статистическую надежность уравнения регрессии и коэффициента детерминации .
5.С помощью частных -критериев Фишера оценить целесообразность включения в уравнение множественной регрессии фактора после и фактора после .
6.Составить уравнение линейной парной регрессии, оставив лишь один значащий фактор.
Решение
Для удобства проведения расчетов поместим результаты промежуточных расчетов в таблицу:
№ | |||||||||
7,0 | 3,9 | 10,0 | 27,3 | 70,0 | 39,0 | 15,21 | 100,0 | 49,0 | |
7,0 | 3,9 | 14,0 | 27,3 | 98,0 | 54,6 | 15,21 | 196,0 | 49,0 | |
7,0 | 3,7 | 15,0 | 25,9 | 105,0 | 55,5 | 13,69 | 225,0 | 49,0 | |
7,0 | 4,0 | 16,0 | 28,0 | 112,0 | 64,0 | 16,0 | 256,0 | 49,0 | |
7,0 | 3,8 | 17,0 | 26,6 | 119,0 | 64,6 | 14,44 | 289,0 | 49,0 | |
7,0 | 4,8 | 19,0 | 33,6 | 133,0 | 91,2 | 23,04 | 361,0 | 49,0 | |
8,0 | 5,4 | 19,0 | 43,2 | 152,0 | 102,6 | 29,16 | 361,0 | 64,0 | |
8,0 | 4,4 | 20,0 | 35,2 | 160,0 | 88,0 | 19,36 | 400,0 | 64,0 | |
8,0 | 5,3 | 20,0 | 42,4 | 160,0 | 106,0 | 28,09 | 400,0 | 64,0 | |
10,0 | 6,8 | 20,0 | 68,0 | 200,0 | 136,0 | 46,24 | 400,0 | 100,0 | |
9,0 | 6,0 | 21,0 | 54,0 | 189,0 | 126,0 | 36,0 | 441,0 | 81,0 | |
11,0 | 6,4 | 22,0 | 70,4 | 242,0 | 140,8 | 40,96 | 484,0 | 121,0 | |
9,0 | 6,8 | 22,0 | 61,2 | 198,0 | 149,6 | 46,24 | 484,0 | 81,0 | |
11,0 | 7,2 | 25,0 | 79,2 | 275,0 | 180,0 | 51,84 | 625,0 | 121,0 | |
12,0 | 8,0 | 28,0 | 96,0 | 336,0 | 224,0 | 64,0 | 784,0 | 144,0 | |
12,0 | 8,2 | 29,0 | 98,4 | 348,0 | 237,8 | 67,24 | 841,0 | 144,0 | |
12,0 | 8,1 | 30,0 | 97,2 | 360,0 | 243,0 | 65,61 | 900,0 | 144,0 | |
12,0 | 8,5 | 31,0 | 102,0 | 372,0 | 263,5 | 72,25 | 961,0 | 144,0 | |
14,0 | 9,6 | 32,0 | 134,4 | 448,0 | 307,2 | 92,16 | 1024,0 | 196,0 | |
14,0 | 9,0 | 36,0 | 126,0 | 504,0 | 324,0 | 81,0 | 1296,0 | 196,0 | |
Сумма | 123,8 | 1276,3 | 2997,4 | 837,74 | 10828,0 | 1958,0 | |||
Ср. знач. | 9,6 | 6,19 | 22,3 | 63,815 | 229,05 | 149,87 | 41,887 | 541,4 | 97,9 |
Найдем средние квадратические отклонения признаков:
;
;
.
1.Вычисление параметров линейного уравнения множественной регрессии.
Для нахождения параметров линейного уравнения множественной регрессии
необходимо решить следующую систему линейных уравнений относительно неизвестных параметров , , :
либо воспользоваться готовыми формулами:
; ;
.
Рассчитаем сначала парные коэффициенты корреляции:
;
;
.
Находим
;
;
.
Таким образом, получили следующее уравнение множественной регрессии:
.
Коэффициенты и стандартизованного уравнения регрессии находятся по формулам:
;
.
Т.е. уравнение будет выглядеть следующим образом:
.
Так как стандартизованные коэффициенты регрессии можно сравнивать между собой, то можно сказать, что ввод в действие новых основных фондов оказывает большее влияние на выработку продукции, чем удельный вес рабочих высокой квалификации.
Сравнивать влияние факторов на результат можно также при помощи средних коэффициентов эластичности:
.
Вычисляем:
; .
Т.е. увеличение только основных фондов (от своего среднего значения) или только удельного веса рабочих высокой квалификации на 1% увеличивает в среднем выработку продукции на 0,61% или 0,20% соответственно. Таким образом, подтверждается большее влияние на результат фактора , чем фактора .
2.Коэффициенты парной корреляции мы уже нашли:
; ; .
Они указывают на весьма сильную связь каждого фактора с результатом, а также высокую межфакторную зависимость (факторы и явно коллинеарны, т.к. ). При такой сильной межфакторной зависимости рекомендуется один из факторов исключить из рассмотрения.
Частные коэффициенты корреляции характеризуют тесноту связи между результатом и соответствующим фактором при элиминировании (устранении влияния) других факторов, включенных в уравнение регрессии.
При двух факторах частные коэффициенты корреляции рассчитываются следующим образом:
;
.
Если сравнить коэффициенты парной и частной корреляции, то можно увидеть, что из-за высокой межфакторной зависимости коэффициенты парной корреляции дают завышенные оценки тесноты связи. Именно по этой причине рекомендуется при наличии сильной коллинеарности (взаимосвязи) факторов исключать из исследования тот фактор, у которого теснота парной зависимости меньше, чем теснота межфакторной связи.
Коэффициент множественной корреляции определить через матрицу парных коэффициентов корреляции:
,
где
– определитель матрицы парных коэффициентов корреляции;
– определитель матрицы межфакторной корреляции.
;
.
Коэффициент множественной корреляции
.
Аналогичный результат получим при использовании других формул:
;
;
.
Коэффициент множественной корреляции показывает на весьма сильную связь всего набора факторов с результатом.
3.Нескорректированный коэффициент множественной детерминации оценивает долю вариации результата за счет представленных в уравнении факторов в общей вариации результата. Здесь эта доля составляет и указывает на весьма высокую степень обусловленности вариации результата вариацией факторов, иными словами – на весьма тесную связь факторов с результатом.
Скорректированный коэффициент множественной детерминации
определяет тесноту связи с учетом степеней свободы общей и остаточной дисперсий. Он дает такую оценку тесноты связи, которая не зависит от числа факторов и поэтому может сравниваться по разным моделям с разным числом факторов. Оба коэффициента указывают на весьма высокую (более ) детерминированность результата в модели факторами и .
4.Оценку надежности уравнения регрессии в целом и показателя тесноты связи дает -критерий Фишера:
.
В нашем случае фактическое значение -критерия Фишера:
.
Получили, что (при ), т.е. вероятность случайно получить такое значение -критерия не превышает допустимый уровень значимости . Следовательно, полученное значение не случайно, оно сформировалось под влиянием существенных факторов, т.е. подтверждается статистическая значимость всего уравнения и показателя тесноты связи .
5.С помощью частных -критериев Фишера оценим целесообразность включения в уравнение множественной регрессии фактора после и фактора после при помощи формул:
;
.
Найдем и .
;
.
Имеем
;
.
Получили, что . Следовательно, включение в модель фактора после того, как в модель включен фактор статистически нецелесообразно: прирост факторной дисперсии за счет дополнительного признака оказывается незначительным, несущественным; фактор включать в уравнение после фактора не следует.
Если поменять первоначальный порядок включения факторов в модель и рассмотреть вариант включения после , то результат расчета частного -критерия для будет иным. , т.е. вероятность его случайного формирования меньше принятого стандарта . Следовательно, значение частного -критерия для дополнительно включенного фактора не случайно, является статистически значимым, надежным, достоверным: прирост факторной дисперсии за счет дополнительного фактора является существенным. Фактор должен присутствовать в уравнении, в том числе в варианте, когда он дополнительно включается после фактора .
6.Общий вывод состоит в том, что множественная модель с факторами и с содержит неинформативный фактор . Если исключить фактор , то можно ограничиться уравнением парной регрессии:
, .
Варианты индивидуальных заданий
По 20 предприятиям региона изучается зависимость выработки продукции на одного работника (тыс. руб.) от ввода в действие новых основных фондов (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих (%) (смотри таблицу своего варианта).
Требуется:
1.Построить линейную модель множественной регрессии. Записать стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат.
2.Найти коэффициенты парной, частной и множественной корреляции. Проанализировать их.
3.Найти скорректированный коэффициент множественной детерминации. Сравнить его с нескорректированным (общим) коэффициентом детерминации.
4.С помощью -критерия Фишера оценить статистическую надежность уравнения регрессии и коэффициента детерминации .