Задания для выполнения лабораторной работы

Лабораторная работа № 3

Линейные модели множественной регрессии

Цель лабораторной работы: построить линейную модель множественной регрессии и оценить ее на адекватность. Используя полученную модель разработать прогноз на один промежуток времени.

Задание

1. Для заданного набора данных постройте линейную модель множественной регрессии. Оцените точность и адекватность построенного уравнения регрессии.

Для получения отчета по построению модели в среде Excel необходимо выполнить следующие действия: проверьте доступ к пакету анализа.

В главном меню последовательно выберите Сервис / Надстройки. Установите флажок (в случае его отсутствия) против функции - Пакет анализа; подготовьте необходимую информацию для расчетов в столбцах таблицы Excel; в главном меню выберите Сервис / Анализ данных / Регрессия. Щелкните по кнопке ОК. Заполните диалоговое окно ввода данных и параметров вывода. Отчета о результатах регрессионного анализа и его интерпретация представлена в таблицах 1, 2, 3. Результаты расчетов коэффициентов регрессии сопровождаются расчетом показателей адекватности и достоверности регрессии.

Таблица 1

Регрессионная статистика

Регрессионная статистика
Множественный R  
R-квадрат  
Нормированный R-квадрат  
Стандартная ошибка  
Наблюдения  


Таблица 2

Дисперсионный анализ

Дисперсионный анализ df SS MS F Значимость F
Регрессия          
Остаток          
Итого          

Таблица 3

Коэффициенты регрессии

Коэффи-циенты Станд. ошибка t-статистика P-Значение Нижн 95% Верхн 95% Нижн 95% Верхн 95%
Y-перес-е                
XI                
Х2                


2. Выделите значимые и незначимые факторы в модели. Постройте уравнение регрессии со статистически значимыми факторами. Дайте экономическую интерпретацию параметров модели (рассчитайте коэффициенты эластичности).

На основании выше приведенных таблиц делается вывод о значимости (не значимости) параметров уравнения регрессии. В случае, когда один из факторов признается незначимым он исключается из модели и строится новое уравнении регрессии.

3. Для полученного уравнения проверьте выполнение условия гомоскедастичности остатков, применив тест Голдфельда-Квандта.

Для проверки полученного уравнения на выполнение условия гомоскедастичности остатков необходимо все n наблюдений расположить в порядке возрастания значений фактора Х. Затем выбирают m первых и m последних наблюдений.

Гипотеза о гомоскедастичности равносильна тому, что значения остатков e1,…,em и en-m+l,…,en представляют собой выборочные наблюдения нормально распределенных случайных величин, имеющих одинаковые дисперсии.

Гипотеза о равенстве дисперсий двух нормально распределенных совокупностей проверяется с помощью F – критерия Фишера.

Расчетное значение вычисляется по формуле (в числителе всегда большая сумма квадратов):

Задания для выполнения лабораторной работы - student2.ru

Гипотеза о равенстве дисперсий двух наборов по m наблюдений (т.е. гипотеза об отсутствии гетероскедастичности остатков) отвергается, если расчетное значение превышает табличное F>Fα;m-p;m-p, где p – число регрессоров.

Мощность теста (вероятность отвергнуть гипотезу об отсутствии гетероскедастичности, когда гетероскедастичности действительно нет) максимальна, если выбирать m порядка n/3.

Тест Голдфельда – Квандта позволяет выявить факт наличия гетероскедастичности, но не позволяет описать характер зависимостей дисперсий ошибок регрессии количественно.

4. Проверьте полученную модель на наличие автокорреляции остатков с помощью теста Дарбина – Уотсона.

Расчетное значение определяется по следующей формуле:

Задания для выполнения лабораторной работы - student2.ru

Значения критерия находятся в интервале от 0 до 4. По таблицам критических точек распределения Дарбина-Уотсона для заданного уровня значимости Задания для выполнения лабораторной работы - student2.ru , числа наблюдений (n) и количества объясняющих переменных (m) находят пороговые значения dн (нижняя граница) и dв (верхняя граница).

Если расчетное значение:

Задания для выполнения лабораторной работы - student2.ru , то гипотеза об отсутствии автокорреляции не отвергается (принимается);

Задания для выполнения лабораторной работы - student2.ru или Задания для выполнения лабораторной работы - student2.ru , то вопрос об отвержении или принятии гипотезы остается открытым (расчетное значение попадает в зону неопределенности);

Задания для выполнения лабораторной работы - student2.ru , то принимается альтернативная гипотеза о наличии положительной автокорреляции;

Задания для выполнения лабораторной работы - student2.ru , то принимается альтернативная гипотеза о наличии отрицательной автокорреляции.

5. Спрогнозировать значение результативного показателя, используя полученную модель регрессии.

Задания для выполнения лабораторной работы

Вариант №1

Предполагается, что объем предложения некоторого блага Y для функционирующей в условиях конкуренции фирмы зависит линейно от цены X1 этого блага и заработной платы X2 сотрудников этой фирмы. Исходные данные за 16 месяцев представлены в таблице 1.

Таблица 1

Исходная информация

Месяцы Y X1 X2

Вариант №2

По данным, представленным в таблице ниже, изучается зависимость объема валового национального продукта Y (млрд. долл.) от следующих переменных: X1 – потребление, млрд.долл. Х2 – инвестиции, млрд. долл.

 
Y 9,5 16,5
X1 1,65 1,8 2,0 2,1 2,2 2,4 2,65 2,85 3,2 3,55
Х2 23,5 26,5 28,5 30,5

Задание:

1. Для заданного набора данных постройте линейную модель множественной регрессии. Оцените точность и адекватность построенного уравнения регрессии.

2. Дайте экономическую интерпретацию параметров модели.

3. Для полученного уравнения проверьте выполнение условия гомоскедастичности остатков, применив тест Голдфельда-Квандта.

4. Проверьте полученную модель на наличие автокорреляции остатков с помощью теста Дарбина – Уотсона.

Вариант №3

По данным за два года изучается зависимость оборота розничной торговли Y (млрд. долл.) от ряда факторов. В таблице представлены следующие данные за 2 года: Y – оборот розничной торговли, млрд.руб.; Х1 – денежные доходы населения, млрд.руб.; Х2 – доля доходов, используемая на покупку товаров и оплату услуг, млрд.руб.; Х3 – численность безработных, млн.чел.; Х4 – официальный курс рубля по отношению к доллару США.

Месяц Y X1 X2 X3 X4
72,9 117,7 81,6 8,3 6,026
67,0 123,8 73,2 8,4 6,072
69,7 126,9 75,3 8,5 6,106
70,0 134,1 71,3 8,5 6,133
69,8 123,1 77,3 8,3 6,164
69,1 126,7 76,0 8,1 6,198
70,7 130,4 76,6 8,1 6,238
80,1 129,3 84,7 8,3 7,905
105,2 145,4 92,4 8,6 16,065
102,5 163,8 80,3 8,9 16,010
108,7 164,8 82,6 9,4 17,880
134,8 227,2 70,9 9,7 20,650
116,7 164,0 89,9 10,1 22,600
117,8 183,7 81,3 10,4 22,860
128,7 195,8 83,7 10,0 24,180
129,8 219,4 76,1 9,6 24,230
133,1 209,8 80,4 9,1 24,440
136,3 223,3 78,1 8,8 24,220
139,7 223,6 79,8 8,7 24,190
151,0 236,6 92,1 8,6 24,750
154,6 236,6 83,2 8,7 25,080
160,2 248,6 80,8 8,9 26,050
163,2 253,4 81,8 9,1 26,420
191,7 351,4 68,3 9,1 27,000

Вариант №4

По данным, представленным в таблице 1, изучается зависимость чистой прибыли предприятия Y (млрд. долл.) от следующих переменных: X1 – оборот капитала, млрд. долл.; X2 – численность служащих, тыс. чел.; X3 – рыночная капитализация компании, млрд. долл.

№ п/п Y X1 X2 X3
0,9 31,3 40,9
1,7 13,4 64,7 40,5
0,7 4,5 38,9
1,7 50,2 38,5
2,6 37,3
1,3 96,6 26,5
4,1 137,1
1,6 17,9 85,6 36,8
6,9 165,4 36,3
0,4 4,1 35,3
1,3 6,8 26,8 35,3
1,9 27,1 42,7
1,9 13,4 61,8 26,2
1,4 9,8 33,1
0,4 19,5 32,7
0,8 6,8 33,5 32,1
1,8 30,5
0,9 12,4 29,8
1,1 17,7 25,4
1,9 12,7 59,3 29,3
0,9 21,4 29,2
1,3 13,5 70,7 29,2
13,4 65,4 29,1
0,6 4,2 23,1 27,9
0,7 15,5 80,8 27,2

Вариант №5

По данным за два года изучается зависимость оборота розничной торговли Y (млрд. долл.) от ряда факторов. В таблице представлены следующие данные за 2 года: Y – оборот розничной торговли, млрд.руб.; Х1 – товарные запасы в фактических ценах, млрд.руб.; Х2 – номинальная заработная плата, руб.; Х3 – денежные доходы населения, млрд.руб.; Х4 – официальный курс рубля по отношению к доллару США.

Месяц Y X1 X2 X3 X4
72,9 42,1 117,7 6,026
67,0 36,7 123,8 6,072
69,7 37,9 126,9 6,106
70,0 39,1 134,1 6,133
69,8 39,6 123,1 6,164
69,1 39,6 126,7 6,198
70,7 38.8 130,4 6,238
80,1 44,9 129,3 7,905
105,2 42,9 145,4 16,065
102,5 41,5 163,8 16,010
108,7 46,9 164,8 17,880
134,8 50,6 227,2 20,650
116,7 48,3 164,0 22,600
117,8 46,7 183,7 22,860
128,7 50,4 195,8 24,180
129,8 51,9 219,4 24,230
133,1 54,2 209,8 24,440
136,3 54,6 223,3 24,220
139,7 54,4 223,6 24,190
151,0 54,9 236,6 24,750
154,6 57,0 236,6 25,080
160,2 58,1 248,6 26,050
163,2 63,1 253,4 26,420
191,7 68,0 351,4 27,000

Вариант 6

Построить регрессионною модель зависимости данных об объеме продаж в зависимости от:

· Х1 результат теста способности к продаже;

· Х2 возраст продавца;

· Х3 результат теста тревожности;

· Х4 опыт работы;

· Х 5 средний балл школьного аттестата.

Объем продаж в месяц (тыс. руб.) У Результат теста способности к продаже Х1 Возраст продавца Х2 Результат теста тревожности Х3 Опыт работы Х4 Средний балл школьного аттестата Х5
22,1 4,9 2,4
22,5 3,0 2,6
23,1 1,5 2,8
0,6 2,7
22,6 1,8 2,0
21,7 3,3 2,5
23,8 3,2 2,5
22,0 2,1 2,3
22,4 6,0 2,8
22,6 1,8 3,4
21,1 3,8 3,0
22,5 4,5 2,7
22,2 4,5 2,8
24,8 0,1 3,8
22,6 0,9 3,7
20,5 4,8 2,1
21,9 2,3 1,8
20,5 3,0 1,5
20,8 0,3 1,9
20,0 2,7 2,2
23,3 4,4 2,8
21,3 3,9 2,9
22,9 1,4 3,2
22,3 2,7 2,4
22,6 2,7 2,4
22,4 2,2 2,6
23,8 0,7 3,4
20,6 3,1 2,3
22,4 0,6 4,0
25,0 4,6 3,6

Вариант 7

№ п/п x1 x2 x3 x4 x5 x6 x7 x8 y
8,2 15,9
68.4 40,5 10,7
34.8 10,7 13,5
8,5 15,1
54.7 10,7 21,1
74.1 46,3 10,7 28,7
71.7 45,9 10,7 27,2
74.5 47,5 10,4 28,3
137.7 87,2 14,6 52,3
17,7
31,1
48,7
65,8
62,6 21,4 34,4
45,3 20,6 10,4 24,7
56,4 29,7 9,4 30,8
17,8 8,3 15,9
67,5 43,5 8,3
17,8 8,3 15,4
42,4 8,3 28,6
8,3 15,6
69,1 41,3 8,3 27,7
68,1 35,4 34,1
75,3 41,4 12,1 37,7
83,7 48,5 12,1 41,9
48,7 22,3 12,4 24,4
39,9 8,1 21,3
68,6 35,5 36,7
9,2 21,5
48,6 26,4
53,9
68,5 30,7 8,3 34,2
71,1 36,2 13,3 35,6
7,4
93,2 49,5 46,6
55,2 58,5
10,2 24,2
35,7
52,3 11,5 51,2
89,6 75,9
40,8 19,2 10,1 21,2
59,2 31,9 11,2 30,8
65,4 38,9 9,3
60,2 36,3 10,9 31,9
82,2 49,7 13,8 43,6
98,4 52,3 15,3 52,2
76,7 44,7 43,1
38,7 10,2
56,4 32,7 10,1 35,2
76,7 44,7 40,8
38,7 10,2 18,2
41,5 10,2 20,1
48,8 28,5 22,7
57,4 33,5 10,1 27,6
76,7 44,7
17,5 8,3 17,8
30,5 8,3 25,9
42,5 8,3 32,6
40,5 19,8
29,9
45,6 39,2
21,2 11,2 22,4
78,1 11,6 35,2
91,6 53,8 41,2
39,9 19,3 8,4 17,8
56,2 31,4 11,1
79,1 42,4 15,5 35,2
91,6 55,2 9,4 40,8

Принятые в таблице обозначения:

y – цена квартиры, тыс. долл.;

x1 - число комнат в квартире;

x2 – район города (1, 2, 3, 4);

x3 – общая площадь квартиры, м2;

x4 – жилая площадь квартиры, м2;

x5 – площадь кухни, м2;

x6 – тип дома (1 – кирпичный, 0 – другой);

x7 – наличие балкона (1 – есть, 0 – нет);

x8 – число месяцев до окончания строительства.

Построить экономико-математическую модель зависимости стоимости квартиры от ряда факторов и спрогнозировать стоимость квартир на рынке недвижимости на ближайшие пять лет.

Вариант 8

Приведена информация о 25 лагерях. Анализировались следующие переменные:

У - стоимость одного пребывания в лагере;

Х1 – общая площадь лагеря, га

Х2 – количество жилых помещений;

Х3 – наличие плавательного бассейна;

Х4 – количество дополнительных мест развлечения.

№ лагеря У Х1 Х2 Х3 Х4
0,8
8,8 0,4
0,9
2,2
0,6
1,0
7,75 0,7
8,0 0,36
8,5 0,46
8,5 0,18
9,0 1,04
7,0 0,50
9,0 5,0
8,5 2,4
9,0 1,2
7,5 2,4
8,5 3,46
9,0 2,0
8,0 2,68
9,5 2,28
7,5 0,04
7,5 0,64
7,5 0,5
9,0 1,32
7,5 2,4

Вариант 9

Приведена информация по 15 предприятиям, характеризующая эффективность использования основных производственных фондов.

Фондоотдача, У Среднечасовая производительность оборудования, Х1 Удельный вес активной части основных производственных фондов, Х2

Наши рекомендации