Порядок старшей производной, входящей в ур-е назыв порядком ур-я

О2. ф-ция у=у(х) наз решением ДУ (1) или (2) если, будучи подставленным в соответствующ ур-е вместе со всеми своими произв-ми, она обр-т его в верное рав-во. Задача нах-я решения ДУ наз задачей интегрирования ДУ.

О3. Общим решением ДУ (1), (2) n-го порядка назыв ф-ция вида y=j(x,c1,c2,…,cn), которая зависит от переменной х и n произвольных постоянных

О4. Частичным реш ДУ наз реш, получ из общего при некот конкретных числовых значениях постоянных c1,c2,…,cn

Демографическая модель

Из статистики известно, что для конкр региона число рожд и умерш за ед врем проп-но числ-ти населения с коэф. Проп-ти k1,k2. Найти закон измен числ-ти населения с течением времени, т.е. опис матем демограф процесс.

Реш. Пусть y=y(t) –число жителей региона в момент времени t.

∆у – прирост населения за время ∆t

Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru где k=k1-k2

Разделим на ∆t

Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru , Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru

y’=ky, где k=k1-k2 y=cekx

16.ДУ 1го порядка

Имеют вид: y’=f(x,y) (1) F(x,y,y’)=0 (2)

1) y’=f(x) dy/dx=f(x)

dy=f(x)dx òdy=òf(x)dx y=òf(x)dx

2) y’=f(y) dy/dx=f(y)

Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru

3) f(x)dx=f(y)dy ДУ с разделенными переменными òf(x)dx=òf(y)dy

4)y’=f(x)gy или M(x)N(y)d(x)=K(x)L(y)d(y)

ДУ с разделяющимися переменными

Ур-е вида (4) реш по схеме:

d(y)/d(x)=f(x)gy

d(y)/g(x)=f(x)d(x)

M(x)d(x)/K(x)=L(y)d(y)/N(y)

Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru

5) y’=g(y/x) однородное ДУ 1го порядка(ф-ция вида f(αx,αy)=αkg(x,y) наз однор ф-ция k-того порядка,αЄR)

Реш с помощью подстановки

z=y/x y=zx y’=z’xx+z

z’x+z=g(z) d(z)/(g(z)-z)=d(x)/x

6) y’=f(ax+by) приводится к ур-ю вида (4) путем замены z=ax+by

18.Линейные однородные ДУ 2 порядка с постоянными коэфф-ми. Их нахождение.

Обыкн ДУ 2 порядка с пост.коэфф. имеет вид:

(1) y``+py`+qy=r(x) p,q принадл. R, r(x) – функция

Если r(x) =0, то

(2) y``+ py`+qy=0 – однор.лин.ДУ с пост.коэфф.

Ур-е вида (3) Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru =0 – характерист.ур-е (1) и(2) Стр-ра общего решения ур.(2) определяется корнями квадр.ур-я. (3)

Возможны 3 случая

1. кв.ур-е имеет разные корни α1 Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru α2, D>0 тогда общее решение:

y=C1 Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru C1, C2 прин.R

2. корни кв.ур. кратные, т.е. α1= α2=α ; D=0

y= Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru C1, C2 прин.R

3. корни комплексно сопряженные : λ1= α-βi; λ2= α+βi;

y= C1 Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru C1, C2 прин.R

18а Лин неоднор ДУ 2-го порядка с пост коэфф-ми.

Рассмотрим уравнение y´´+py´+qy=r(x) /где p,q ? R , r(x)-функция. которое имеет вид y=yO+yЧ, где

yO-общее решение уравнения y´´+py´+qy =0

yЧ-частное решение уравнения y´´+py´+qy=r(x) , которое зависит от вида правой части,т.е r(x)

Рассмотрим некоторые частные случаи:

1) r(x)=Pn(x) ,где Pn(x) – многочлен степени «n»

В этом случае решение yЧ ищут из уравнения к²+pк+q=0 в виде:

• yЧ=Qn(x) при q≠0

• yЧ=x Qn(x) q=0, p≠0

• yЧ=x² Qn(x) q=p=0

2) r(x)=а Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru где а,м ? R , а,м =соnst

Вид частного решения следущее:

• yЧ=А Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru если «м» не явл корнем Ур-я к²+pк+q=0

(корни некратные,некомплексные)

• yЧ=Аx Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru если «м» –простой корень ур-я к²+pк+q=0

•yЧ=Аx² Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru если «м»-кратный корень Ур-я к²+pк+q=0

3) r(x)=acosmx+bsinmx где a,b,m=const

• yЧ= Acosmx+Bsinmx при условии что p²+(q-m²)≠0

• yЧ= x(Acosmx+Bsinmx) если p²+(q-m²)=0, p=0,q= m²

17. Линейные дифференциальные уравнения первого порядка. ДУ вида A(x)y’+B(X)y+C=0, где A(x)≠0, или после деления на A(x), приведённое к виду y’+p(x)y=q(x), называется линейным ДУ первого порядка. Если q(x) Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru 0, то уравнение называется линейным однородным, иначе – линейным неоднородным.

Линейное однородное уравнение – это уравнение с разделяющимися переменными, его общее решение выражается формулой Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru .

Для решения линейного неоднородного уравнения можно применять метод вариации произвольной постоянной, тогда общее решение неоднородного уравнения получается в виде Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru .

Линейное неоднородное уравнение может быть сведено к решению двух уравнений с разделяющимися переменными при помощи подстановки z=y/x, y=zx, y’=z’x+z, z’x+z=g(z), d(z)/(g(z)-z)=d(x)/xy’=f(ax+by).

19.Числовой ряд и его сходимость.

Пусть задана бескон послед-ть чисел Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ruПорядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru

Тогда Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru + Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru +… Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru +…= Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru (1) наз числовым рядом, а числа Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru -члены ряда, Порядок старшей производной, входящей в ур-е назыв порядком ур-я - student2.ru -общий член ряда.

Наши рекомендации