Коэффициента корреляции
№ п/п | x | y | |||
10,2 7,5 13,9 12,8 0,6 2,8 13,2 10,1 5,4 12,7 | 97,3 0,6 5,6 105,6 121,2 16,2 76,2 | 104,04 56,25 193,21 163,84 0,36 7,84 174,24 102,01 29,16 161,29 | |||
Сумма | 89,2 | 631,7 | 992,24 | ||
Средняя | 5,8 | 8,92 | 63,17 | 44,8 | 99,224 |
1. Используя формулу (8) получаем:
2. По формуле (9) значение коэффициента корреляции составило:
Таким образом, результат по всем формулам одинаков и свидетельствует о сильной прямой зависимости между изучаемыми признаками.
В случае наличия нелинейной зависимости между двумя признаками для измерения тесноты связи применяют теоретическое корреляционное отношение:
(11)
где - дисперсия выравненных значений результативного признака, то есть рассчитанных по уравнению регрессии;
- дисперсия эмпирических (фактических) значений результативного признака.
Для оценки тесноты связи также рассчитывается коэффициент детерминации:
(12)
Коэффициент детерминации показывает, какая доля вариации результативного признака объясняется вариацией изучаемого фактора х.
Корреляционное отношение ( ) изменяется в пределах от 0 до 1 ( ) и анализ степени тесноты связи полностью соответствует линейному коэффициенту корреляции (таблица 1).
Для измерения тесноты связи при множественной корреляционной зависимости, то есть при исследовании трех и более признаков одновременно, вычисляется множественный и частные коэффициенты корреляции.
Множественный коэффициент корреляциивычисляется при наличии линейной связи между результативным и несколькими факторными признаками, а также между каждой парой факторных признаков. Множественный коэффициент корреляции для двух факторных признаков вычисляется по формуле:
(13)
где - парные коэффициенты корреляции между признаками.
Множественный коэффициент корреляции изменяется в пределах от 0 до 1 и по определению положителен: .
Приближение R к единице свидетельствует о сильной зависимости между признаками.
Частные коэффициенты корреляциихарактеризуют степень тесноты связи между двумя признаками x и x при фиксированном значении других (k − 2) факторных признаков, то есть когда влияние x исключается, то есть оценивается связь между x и x в «чистом виде».
В случае зависимости y от двух факторных признаков x и x коэффициенты частной корреляции имеют вид:
(14)
где r - парные коэффициенты корреляции между указанными в индексе переменными.
В первом случае исключено влияние факторного признака x , во втором - x . Эти показатели могут быть и отрицательными, так как они показывают, какая существует связь между признаками: прямая или обратная.