Дисперсионный анализ для связанных выборок
Метод дисперсионного анализа для связанных выборок применяется в тех случаях, когда исследуется влияние разных градаций фактора или разных условий на одну и ту же выборку испытуемых.Градаций фактора должно быть не менее трех.
В данном случае различия между испытуемыми - возможный самостоятельный источник различий. Однофакторный дисперсионный анализ для связанных выборок позволит определить, что перевешивает - тенденция, выраженная кривой изменения фактора, или индивидуальные различия между испытуемыми. Фактор индивидуальных различий может оказаться более значимым, чем фактор изменения экспериментальных условий.
Пример 2.Группа из 5 испытуемых была обследована с помощью трех экспериментальных заданий, направленных на изучение интеллектуальной, настойчивости (Сидоренко Е. В., 1984). Каждому испытуемому индивидуально предъявлялись последовательно три одинаковые анаграммы: четырехбуквенная, пятибуквенная и шестибуквенная. Можно ли считать, что фактор длины анаграммы влияет на длительность попыток ее решения?
Таблица 2. Длительность решения анаграмм (сек)
Код испытуемого | Условие 1. четырехбуквенная анаграмма | Условие 2. Пятибуквенная анаграмма | Условие 3. шестибуквенная анаграмма | Суммы по испытуемым |
суммы |
Сформулируем гипотезы. Наборов гипотез в данном случае два.
Набор А.
Н0(А): Различия в длительности попыток решения анаграмм разной длины являются не более выраженными, чем различия, обусловленные случайными причинами.
Н1(А): Различия в длительности попыток решения анаграмм разной длины являются более выраженными, чем различия, обусловленные случайными причинами.
Набор Б.
Но(Б): Индивидуальные различия между испытуемыми являются не более выраженными, чем различия, обусловленные случайными причинами.
Н1(Б): Индивидуальные различия между испытуемыми являются более выраженными, чем различия, обусловленные случайными причинами.
Последовательность операций в однофакторном дисперсионном анализе для связанных выборок:
1. подсчитаем SSфакт - вариативность признака, обусловленную действием исследуемого фактора по формуле (1).
,
где Тс – сумма индивидуальных значений по каждому из условий (столбцов). Для нашего примера 51, 1244, 47 (см. табл. 2); с – количество условий (градаций) фактора (=3); n – количество испытуемых в каждой группе (=5); N – общее количество индивидуальных значений (=15); - квадрат общей суммы индивидуальных значений (=13422)
2. подсчитаем SSисп - вариативность признака, обусловленную индивидуальными значения испытуемых.
где Ти – сумма индивидуальных значений по каждому испытуемому. Для нашего примера 247, 631, 100, 181, 183 (см. табл. 2); с – количество условий (градаций) фактора (=3); N – общее количество индивидуальных значений (=15);
3. подсчитаем SSобщ – общую вариативность признака по формуле (2):
4. подсчитаем случайную (остаточную) величину SSсл, обусловленную неучтенными факторами по формуле (3):
5. число степеней свободыравно (4):
; ; ;
6. «средний квадрат»или математическое ожидание суммы квадратов,усредненная величина соответствующих сумм квадратов SS равна (5):
;
7.значение статистики критерия Fэмп рассчитаем по формуле (6 ):
;
8.определим Fкрит по статистическим таблицам Приложения 3 для df1=k1=2 и df2=k2=8 табличное значение статистики Fкрит_факт=4,46, и для df3=k3=4 и df2=k2=8 Fкрит_исп=3,84
9. Fэмп_факт > Fкрит_факт (6,872>4,46), следовательно принимается альтернативная гипотеза.
10. Fэмп_исп < Fкрит_исп (1,054<3,84), следовательно принимается нулевая гипотеза.
Вывод: различия в объеме воспроизведения слов в разных условиях являются более выраженными, чем различия, обусловленные случайными причинами (р<0,05). Индивидуальные различия между испытуемыми являются не более выраженными, чем различия, обусловленные случайными причинами.
Корреляционный анализ