Раздел II. Аналитическая группировка статистических наблюдений

На транспорте.

· Определить тесноту связи между фактором (среднесписочная численность на АТП) и результирующим показателем (объемами перевезенных грузов). Подсчитать коэффициент корреляции.

Основные понятия математической статистики это корреляция и регрессия.

Первая задача математичкой статистики – это изучение связей между случайными явлениями. Эту задачу решает корреляционный анализ. Он находится в зависимости от регрессионного анализа.

Регрессионный анализ решает вторую задачу математической статистики. Определяет форму связи между случайными явлениями.

Оценки, полученные с помощью регрессионного анализа, имеют большую точность, чем выше коэффициент корреляции.

С помощью аналитических (факторных) группировок исследуются связи между изучаемыми явлениями и их признаками. В основе аналитической группировки лежит факторный признак, и каждая выделенная группа характеризуется средними значениями результативного признака.

Раздел II. Аналитическая группировка статистических наблюдений - student2.ru

Коэффициент корреляции определяет интенсивность связи между случайными величинами и находится по формуле:

Раздел II. Аналитическая группировка статистических наблюдений - student2.ru

Вывод: коэффициент корреляции равен 0,69, следовательно, зависимость между случайными величинами высокая. Зависимость прямая, т.е. с ростом среднесписочной численности объемы перевезенных грузов увеличиваются.

Таблица 2.1

Аналитическая группировка

x y Раздел II. Аналитическая группировка статистических наблюдений - student2.ru Раздел II. Аналитическая группировка статистических наблюдений - student2.ru Раздел II. Аналитическая группировка статистических наблюдений - student2.ru Раздел II. Аналитическая группировка статистических наблюдений - student2.ru Раздел II. Аналитическая группировка статистических наблюдений - student2.ru Раздел II. Аналитическая группировка статистических наблюдений - student2.ru Раздел II. Аналитическая группировка статистических наблюдений - student2.ru Раздел II. Аналитическая группировка статистических наблюдений - student2.ru Раздел II. Аналитическая группировка статистических наблюдений - student2.ru
3587,5 7927,5 1201,38 373,1 448233,01 1443301,89 139203,61 11083,31 -3155,81 0,40
560,88 1314,6 737326,28 314580,766 1728173,2 9084,95 -215,95 0,02
1151,5 -1234,63 -5608,4 6924270,9 1524298,89 3482,99 -1536,99 0,79
4973,5 -944,13 -2580,9 2436692,2 891372,016 6661044,8 4389,35 584,15 0,12
2642,5 256,38 3435,6 880801,95 65728,1406 8134,91 2855,09 0,26
9222,5 28,88 1668,1 48166,388 833,765625 2782557,6 7425,11 1797,39 0,19
9369,5 833,88 1815,1 1513566,5 695347,516 9936,71 -567,21 0,06
-489,13 -1275,4 623830,03 239243,266 1626645,2 5808,95 470,05 0,07
14388,5 847,88 6834,1 5794462,5 718892,016 9980,39 4408,11 0,31
133,88 4793,6 641743,2 17922,5156 7752,71 4595,29 0,37
3300,5 -601,13 -4253,9 2557125,6 361351,266 5459,51 -2159,01 0,65
1533,88 -694,4 -1065123 2352772,52 482191,36 12120,71 -5260,71 0,77
-888,13 -2626,4 2332571,5 788766,016 4564,07 363,93 0,07
2873,5 487,38 5892,6 2871905,9 237534,391 8855,63 4591,37 0,34
1676,5 -709,63 -3683,4 2613832,7 503567,641 5230,68 -1359,68 0,35
2887,5 10132,5 501,38 2578,1 1292594,9 251376,891 6646599,6 8899,31 1233,19 0,12
4672,5 210,88 -2881,9 -607720,7 44468,2656 8305347,6 7992,95 -3320,45 0,71
1137,5 -1248,63 -3459,4 4319493,3 1559064,39 3439,31 655,69 0,16
1452,5 3195,5 -933,63 -4358,9 871655,641 4422,11 -1226,61 0,38
2838,5 10272,5 452,38 2718,1 1229600,5 204643,141 7388067,6 8746,43 1526,07 0,15


· Оценить значимость коэффициента корреляции по t-критерию Стьюдента

Коэффициенты полученные по выборочным данным могут не соответствовать коэффициентам в генеральной совокупности.

С помощью критериев значимости определяется существенность полученных коэффициентов по выборочным данным, т.е. насколько они значимы во всей генеральной совокупности с определённой вероятностью. Для экономических расчетов вероятность 95%.

Критерий Стьюдента используется для малых выборок, если n не более 20.

Раздел II. Аналитическая группировка статистических наблюдений - student2.ru

n -2 - число степеней свободы f.

Теоретическое значение t определяется по таблице распределения Стьюдента (приложение). Для установления значимости коэффициента корреляции проверяют гипотезу о некоррелированности случайных величин в генеральной совокупности, относительно которых подсчитан коэффициент корреляции из частичной совокупности. Если значение t, определенное по формуле, будет больше, чем значение t, полученное из таблицы распределения Стьюдента при заданном уровне значимости, то предположение о нулевом значении коэффициента корреляции в генеральной совокупности не подтверждается. Если tтабл ≥ tрасч, то в генеральной совокупности корреляции может не быть.

По исходным данным:

по t-критерию Стьюдента (tтаб = 2,101):

Раздел II. Аналитическая группировка статистических наблюдений - student2.ru

Вывод: tрассч < tтаб. Это означает, что в генеральной совокупности коэффициент корреляции может быть равен 0 с 95 %-ой вероятностью.

· Построить поле корреляции. Подсчитать коэффициент регрессии

Полем корреляции называются нанесенные в определённом масштабе точки в прямоугольной системе координат, каждая из которых имеет две координаты (рис. 2.1).

Раздел II. Аналитическая группировка статистических наблюдений - student2.ru

Рис. 2.1 Линейная зависимость

Коэффициент регрессии определяет форму связи между случайными величинами и для линейной парной зависимости (y=b*x+a) рассчитывается по формуле

Раздел II. Аналитическая группировка статистических наблюдений - student2.ru

a=109,69

· Оценить модель через среднюю ошибку аппроксимации.

Дополнительной оценкой точности аппроксимации является средняя относительная ошибка аппроксимации. Она представляет собой среднее отклонение расчетных значений от фактических.

Раздел II. Аналитическая группировка статистических наблюдений - student2.ru

Вывод:ошибка аппроксимации составляет 31,5%, это говорит о том, что качество модели удовлетворительно.

· Определить долю влияния изучаемого фактора на результирующий показатель с помощью коэффициента детерминации

Раздел II. Аналитическая группировка статистических наблюдений - student2.ru
Коэффициент детерминации – это квадрат коэффициента корреляции. Он показывает в какой мере вариация результативного признака обусловлена влиянием факторов, включенных в модель.

Раздел II. Аналитическая группировка статистических наблюдений - student2.ru

Вывод: влияние факторов, вошедших в модель, составляет 0,5, на результативный показатель.

Вывод: влияние факторов, не вошедших в модель, составляет 0,5, на объем перевезенного груза.

Наши рекомендации