Теоретические сведения. Множественная регрессия – уравнение связи с несколькими независимыми переменными:
Множественная регрессия – уравнение связи с несколькими независимыми переменными: , где у – зависимая переменная (результативный признак); - независимые переменные (факторы).
Для построения уравнения множественной регрессии чаще используют следующие функции:
- линейная -
- степенная - ;
- экспонента - ;
- гипербола - .
Для оценки параметров уравнения множественной регрессии применяют МНК. Для линейных уравнений и нелинейных уравнений, приводимых к линейным, строится следующая система нормальных уравнений, решение которой позволяет получить оценки параметров регрессии:
Для ее решения может быть применен метод определителей: ; ; …; , где определитель системы, а, b ;…; – частные определители, которые получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.
Другой вид уравнения множественной регрессии – уравнение регрессии в стандартизованном масштабе: ty= , где стандартизованные переменные; - стандартизованные коэффициенты регрессии.
К уравнению множественной регрессии в стандартизованном масштабе применим МНК. Стандартизованные коэффициенты регрессии ( - коэффициенты) определяются из следующей системы уравнений:
где парные коэффициенты корреляции результата с каждым фактором, - коэффициенты межфакторной корреляции.
Связь коэффициентов множественной регрессии bi со стандартизованными коэффициентами описывается соотношением bi = .
Параметр aопределяется как .
Коэффициенты «чистой» регрессии bi несравнимы между собой. В силу того, что все переменные заданы как центрированные и нормированные, стандартизованные коэффициенты регрессии сравнимы между собой. Сравнивая их друг с другом, можно ранжировать факторы по силе их воздействия на результат.
Средние по совокупности коэффициенты эластичности для линейной множественной регрессии рассчитываются по формуле , при этом воздействие остальных факторов считается неизменным.
Для расчета частных коэффициентов эластичности применяется следующая формула , где частное уравнение регрессии, т.е. уравнение регрессии, которое связывает результативный признак y с фактором xi при закреплении факторов x1, x2,…, xi-1, xi+1,…,xp на среднем уровне.
Тесноту совместного влияния факторов на результат оценивает индекс множественной корреляции , причем и (i=1,…,p).
Для уравнения в стандартизованном масштабе . При линейной зависимости R = , где определитель матрицы парных коэффициентов корреляции, определитель матрицы межфакторной корреляции, т.е.
Частные коэффициенты (или индексы) корреляции, измеряющие влияние на у фактора хi при неизменном уровне других факторов можно определить по формулам: r или
r = .
Частные коэффициенты корреляции изменяются в пределах от –1 до 1.
Качество построенной модели в целом оценивает коэффициент (индекс) детерминации, который рассчитывается как квадрат индекса множественной корреляции: . Скорректированный индекс множественной детерминации содержит поправку на число степеней свободы и рассчитывается по формуле , где n число наблюдений, m число факторов.
Средняя ошибка аппроксимации и оценка значимости уравнения множественной регрессии в целом определяется аналогично парной регрессии и корреляции.
Частный F – критерий оценивает статистическую значимость присутствия каждого из факторов в уравнении. В общем виде фактическое значение частного F критерия для фактора xi определится как .
Фактическое значение частного F-критерия сравнивается с табличным Fтабл = F ( ;1; n – m – 1). Если , то дополнительное включение фактора xi в модель статистически оправданно и коэффициент чистой регрессии bi при факторе xi статистически значим. Если , то нецелесообразно включение фактора xi в модель.
Оценка значимости коэффициентов чистой регрессии с помощью t – критерия Стьюдента производится аналогично парной регрессии и корреляции, причем справедливо соотношение , а также , где средняя квадратическая ошибка коэффициента регрессии bi.
Постановка задачи
По 20 предприятиям региона (табл. 9) изучается зависимость выработки продукции на одного работника у (тыс. руб.) от ввода в действие новых основных фондов х1 (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих х2 (%).
Таблица 9
Номер предприятия | y | х1 | x2 | Номер предприятия | у | x1 | x2 |
7,0 | 3,9 | 10,0 | 9,0 | 6,0 | 21,0 | ||
7,0 | 3,9 | 14,0 | 11,0 | 6,4 | 22,0 | ||
7,0 | 3,7 | 15,0 | 9,0 | 6,8 | 22,0 | ||
7,0 | 4,0 | 16,0 | 11,0 | 7,2 | 25,0 | ||
7,0 | 3,8 | 17,0 | 12,0 | 8,0 | 28,0 | ||
7,0 | 4,8 | 19,0 | 12,0 | 8,2 | 29,0 | ||
8,0 | 5,4 | 19,0 | 12,0 | 8,1 | 30,0 | ||
8,0 | 4,4 | 20,0 | 12,0 | 8,5 | 31,0 | ||
8,0 | 5,3 | 20,0 | 14,0 | 9,6 | 32,0 | ||
10,0 | 6,8 | 20,0 | 14,0 | 9,0 | 36,0 |
Требуется:
1. Оценить показатели вариации каждого признака и сделать вывод о возможностях применения МНК для их изучения.