Вычисление вероятности появления первого туза

АННОТАЦИЯ

В данной работе проведен расчет вероятностей появления первого туза из колоды в 52 карты, были рассчитаны эмперические и теоретические частоты появлений туза. Исследованы выборки максимальных температур октября на предмет наличия корреляционных связей между 2013 и 2014 годами.

Предложены способы применения показанных в данной работе методов на практике.

ANNOTATION

In this work we investigated the probabilities of occurrence of the first ace from a deck of 52 cards, calculated experimental and theoretical frequencies of occurrence of aces. Sample of maximum temperatures in October for the presence of correlations between 2013 and 2014 were studied.

The methods of application in practice were shown in this paper.
СОДЕРЖАНИЕ

ВВЕДЕНИЕ. 3

1 ВЫЧИСЛЕНИЕ ВЕРОЯТНОСТИ ПОЯВЛЕНИЯ ПЕРВОГО ТУЗА.. 5

1.1 Эксперимент с тузом. 5

1.2 Вычисление вероятности появления первого туза. 7

1.3 Критерий согласия вычисление вероятности появления первого туза - student2.ru .... 11

1.4 Использование вычисление вероятности появления первого туза - student2.ru критерия согласия экспериментальных и теоретических частот 12

2 ИССЛЕДОВАНИЕ СВЯЗИ МЕЖДУ ТЕМПЕРАТУРАМИ.. 15

2.1 Формулировка задачи. 15

2.2 Коэффициент ранговой корреляции Спирмена. 16

2.3 Вычисление коэффициента ранговой корреляции Спирмена. 17

2.4 Проверка коэффициента на значимость. 26

ЗАКЛЮЧЕНИЕ. 27

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ.. 28

ВВЕДЕНИЕ

Карточные игры, как правило, являются азартными, и оттого вероятность победы во многом зависит от удачи. Однако вероятность победы может не быть равной для всех игроков. Например, она может зависеть от порядкового номера игрока, то есть от того, кто ходит первым. В данной курсовой работе рассмотрен один из таких случаев. Погода из года в год на одной и той же местности, как правило, повторяется циклично. Погода хоть и может существенно отличаться в разные года, все равно более-менее похожа и, в целом, варьируется в некоторых рамках. Погода в определенный месяц за разные годы, предположительно, имеет корреляционную связь. В данной курсовой работе проверено, так ли это.

Актуальность курсовой работы заключается в том, что как карточные игры, так и прогнозирование погоды являются важной частью жизни, но не всегда успешно прогнозируемы. Техники выявления случайности и ее значимости в происходящих явлениях актуальны, так как они облегчают жизнь.

Цель курсовой работы: при помощи математических методов проверить, действительно ли экспериментальные частоты появления первого туза из колоды в 52 карты подчинятся теоретическому распределению; проверить достоверность гипотезы о том, что между температурами октября за 2013 и 2014 годов существует корреляционная связь.

Для достижения цели необходимо решить следующие задачи:

1) рассчитать вероятность появления первого туза из колоды в 52 карты;

2) проверить подчиняется ли эмпирические частоты распределению теоретически высчитанных частот;

3) проверить наличие корреляционной связи между температурами октября за 2013 и 2014 годов.

Объект исследования – колода в 52 карты; температуры за октябрь 2013 и 2014 годов.

Предмет исследования – появление первого туза из колоды в 52 карты; максимальные температуры за октябрь 2013 и 2014 годов.

Методы исследования, применяемые в данной курсовой работе:

1) критерий вычисление вероятности появления первого туза - student2.ru , позволяющий определить, согласия экспериментальных и теоретических частот;

2) тест ранговой корреляции Спирмена, позволяющий выявлять наличие корреляционной связи между выборками.

Основные положения работы, выносимые автором на защиту: результаты проверки согласия эмпирических частот с теоретическими частотами; проверка наличия корреляционной связи между выборками.

Практическая значимость. Данная курсовая работа позволяет выявлять азартные такие карточные игры, в которых вероятность победы зависит от позиции какой-либо определенной карты в колоде из 52 карт, и, следовательно, от порядкового номера игрока. Это может послужить полезной информацией для игроков, зарабатывающих деньги игрой в карты, а также помочь в предупреждении заведомо проигрышных. Также данная курсовая работа позволяет устанавливать, имеется ли связь между температурами определенного месяца разных годов. Методы проверки наличия связей между температурами некоторого месяца за любые два года могут дать полезную информацию о закономерностях погоды, что может позволить увеличить точность прогнозов погоды.

Достоверность результатов работы достигается путем использования корректного применения подходящих математических методов, обеспечивающих заданную погрешность.

Объем работы – 28с.

ВЫЧИСЛЕНИЕ ВЕРОЯТНОСТИ ПОЯВЛЕНИЯ ПЕРВОГО ТУЗА

1.1 Эксперимент с тузом

Перед тем как начать вычислять вероятности появления первого туза из колоды в 52 карты было бы полезнее в первую очередь провести эксперимент.

При проведении эксперимента была взята обычная колода игральных карт состоящая из 52 карт, среди которых имеются четыре туза. Эта колода тщательно тасовалась, после чего открывались верхние карты одна за другой до появления первого туза. Далее подсчитывался номер карты, которая оказалась первым тузом. Этот процесс повторялся 100 раз.

В столбцах таблицы 1 были выписаны по порядку соответствующие результаты, полученные при 100-кратном выполнении эксперимента.

Таблица 1

Результат эксперимента, номер карты оказавшейся первым тузом

Номер тасовки Первые 20 тасовок, номер туза Вторые 20 тасовок, номер туза Третьи 20 тасовок, номер туза Четвертые 20 тасовок, номер туза Пятые 20 тасовок, номер туза
Всего
Среднее 12,15 11,20 11,25 6,45 10,45

Как видно из таблицы 1, 100 тасовок проведенных в эксперименте были поделены на 5 частей (по 20 тасовок), затем в каждой двадцатки тасовок значения номеров карт сложили и поделили на 20, получилось 5 средних значений номеров карт. Как можно заметить из таблицы 1, средние значения номеров карт получились весьма близкие друг другу, из 5 полученных значений только у одного значения (четвертая двадцатка тасовок) отклонение довольно большое.

Можно заметить, что номера карт, оказавшихся первым тузом, меняются весьма значительно: от 1 до 33. Они бы могли меняться больше – от 1 до 49, поскольку все четыре туза могли оказаться внизу колоды. Более того, как можно заметить из таблицы 1, в изменениях номеров не видно никакого ритма, свидетельствующего о причинном характере наблюдаемых изменений.

На основе данных таблицы 1 были произведены расчеты количества повторений номеров карт, то есть было посчитано сколько раз первый туз появился на первом, втором и так до 52 номере карт. Другими словами были рассчитаны частоты которые должны показать на каком номере чаще встретился туз (из 100 раз). Эти частоты изображены на таблице 2, в столбце «Экспериментальная частота» каждому номеру сопоставлено количество случаев когда на этом номере встретился первый туз. Например, в таблице 2 номер 1 встречается 7 раз.

Таблица 2

Экспериментальные и теоритические частоты

Экспериментальная частота Экспериментальная частота
40-49

Из таблицы 2 видно, как расположились экспериментальные частоты. Таблица была поделена на 2 части не случайно, как можно заметить частоты появления туза в первых 20 номерах карт явно больше, если же посмотреть на оставшиеся 29 номера карт, видно, что случай появления первого туза был только в четырех номерах карт, а их частоты не превышают 2. Так же важно заметить, что в первых 20 номерах видна тенденция уменьшения частоты при увеличении порядкового номера карты. На рисунке 1 изображен график на основанный на данных о экспериментальных частотах из таблицы 2.

вычисление вероятности появления первого туза - student2.ru

Рисунок 1. График экспериментальной частоты появления первого туза на определенном порядковом номере

На рисунке 1 виден явно выраженный факт, что частота появления первого туза с 1 по 20 номера карт на много больше, чем на с 21 по 49 номера.

1.2 Вычисление вероятности появления первого туза

Проведя эксперимент было выяснено чему равны экспериментальные частоты при 100 тасовок, а так же была замечена закономерность, первый туз встречался чаще с 1 по 20 номер карт, с 21 номера встретить туз было редкостью. Проведя расчет вероятностей, станет ясно, как в теории должно выглядеть распределение частот.

Рассчитать вероятность появления первого туза на первом номере карты из колоды в 52 карты не сложно, всего в колоде 52 карты, из них 4 туза и того получается, что вероятность произойти события вычисление вероятности появления первого туза - student2.ru вытащить туз из колоды в 52 карты равна:

вычисление вероятности появления первого туза - student2.ru .

Уже со второго номера считать вероятность нужно по другому. При расчете остальных (со второго номера) вероятностей нужно учитывать те события которые автоматически происходят при открытии карт по одной. Событий может быть два. Первое событие когда открытая карта оказалась тузом вычисление вероятности появления первого туза - student2.ru , и второе событие когда карта оказалась другой отличной от туза вычисление вероятности появления первого туза - student2.ru .

Если вероятность события вычисление вероятности появления первого туза - student2.ru при первом открытии равно вычисление вероятности появления первого туза - student2.ru , то вероятность события равно:

вычисление вероятности появления первого туза - student2.ru .

это логично и вероятность второго события можно было предсказать не считая, поделив количество карт отличных от туза (48) на количество карт в колоде (52). Так как при расчете вероятности события вычисление вероятности появления первого туза - student2.ru для первого открытия карты событие вычисление вероятности появления первого туза - student2.ru никак не влияло, то в следующих случаях открытиях карт событие вычисление вероятности появления первого туза - student2.ru происходит, а это значит что его нужно учитывать. Например нужно рассчитать вероятность появления первого туза со второго открытия карты, первая карта была открыта, и она является не тузом, событие вычисление вероятности появления первого туза - student2.ru произошло, вероятность этого события на тот момент было равно вычисление вероятности появления первого туза - student2.ru , так как событие вычисление вероятности появления первого туза - student2.ru со второго открытия карты может наступить только тогда, когда наступило событие вычисление вероятности появления первого туза - student2.ru (первая карта не туз), то при расчете вероятности события вычисление вероятности появления первого туза - student2.ru нужно учитывать вероятность события вычисление вероятности появления первого туза - student2.ru , то есть равна:

вычисление вероятности появления первого туза - student2.ru ,

где 52 – карт на момент события вычисление вероятности появления первого туза - student2.ru , 51 – карт на момент события вычисление вероятности появления первого туза - student2.ru , 48 – количество не тузов, 4 – тузов.

Еще один пример расчета, если нужно рассчитать вероятность появления туза на 5 открытой карте, то нужно учитывать вероятности событий четырех ( вычисление вероятности появления первого туза - student2.ru ) карт отличных от туза которые были бы якобы открытыми, поэтому вероятность события вычисление вероятности появления первого туза - student2.ru считается так:

вычисление вероятности появления первого туза - student2.ru ,
вычисление вероятности появления первого туза - student2.ru .

Можно заметить, что вычисления достаточно громоздкие, поэтому автоматизировав процесс с помощью Microsoft Excel можно вычислить вероятности появления первого туза на всех номерах карт, следует учесть тот факт, что расчет нужно проводить до 49 номера, это делать нужно потому что если первый туз не появился в плоть до 48 номера, то все четыре туза оказались на дне колоды.

Таблица 3

Вероятности появления первого туза на определенном порядковом номере

Номер карты Вероятность Номер карты Вероятность
0,076923 0,009261
0,071006 0,008181
0,066720 0,007189
0,062610 0,006280
0,058672 0,005451
0,054903 0,004699
0,051300 0,004020
0,047857 0,003409
0,044572 0,002863
0,041441 0,002380
0,038460 0,001954
0,035626 0,001582
0,032934 0,001261
0,030382 0,000986
0,027965 0,000755
0,025680 0,000563
0,023522 0,000406
0,021490 0,000282
0,019577 0,000186
0,017782 0,000115
0,016100 0,000065
0,014528 0,000032
0,013062 0,000012
0,011697 0,000003
0,010432    

На основе полученных значениях вероятности появления первого туза мы можем посчитать теоретическую частоту появления первого туза на определенном порядковом номере. Так как в эксперименте карты были тасованы 100 раз, то и вероятности следует умножить на 100. Таким образом можно будет сравнить теоретические частоты с экспериментальными. На таблице 4 изображены посчитанные теоретические и экспериментальные частоты.

Таблица 4

Экспериментальные и теоритические частоты

Эксперимент. Частота Теоретическая частота Эксперимент. Частота Теоретическая частота
7,7 1,6
7,1 1,5
6,7 1,3
6,3 1,2
5,9 1,0
5,5 0,9
5,1 0,8
4,8 0,7
4,5 0,6
4,1 0,5
3,8 0,5
3,6 0,4
3,3 0,3
3,0 0,3
2,8 0,2
2,6 0,2
2,4 0,2
2,1 0,1
2,0 0,1
1,8 40-49 0,24
   

В следствии эксперимента было выявлено, что теоретические частоты точно не совпадают с наблюдаемыми в опыте, но в их поведении обнаруживается одна и та же тенденция: и те, и другие частоты убывают при возрастании номеров. Этому свидетельствует рисунка 2 и рисунок 3.

вычисление вероятности появления первого туза - student2.ru

Рисунок 2. График теоретической частоты появления первого туза

вычисление вероятности появления первого туза - student2.ru

Рисунок 3. График экспериментальной частоты появления первого туза на определенном порядковом номере

Наблюдавшиеся на рисунке 4 расхождения между теоретическими и экспериментальными частотами – обычное явление. Существуют два источника такого рода расхождений – колебания в выборке и несоответствие теоретико-вероятностной модели реальной ситуации эксперимента. То есть при проведении эксперимента можно тщательно производить подсчет карт, но значительно труднее обеспечить тщательность их тасовки.

1.3 Критерий согласия вычисление вероятности появления первого туза - student2.ru

вычисление вероятности появления первого туза - student2.ru – распределение используется для проверки согласованности набора данных с фиксированным распределением вероятностей. В критерии согласия частоты, принадлежащие определенной категории, сравниваются с частотами, которые являются теоретически ожидаемыми, если бы данные действительно имели указанное распределение.

Проверка с помощью критерия согласия вычисление вероятности появления первого туза - student2.ru выполняется в несколько этапов. Во-первых, определяется конкретное распределение вероятностей, которое сравнивается с исходными данными. Во-вторых, выдвигается гипотеза о параметрах выбранного распределения вероятностей (например, о ее математическом ожидании) или проводится их оценка. В-третьих, на основе теоретического распределения определяется теоретическая вероятность, соответствующая каждой категории. В заключение, для проверки согласованности данных и распределения применяется тестовая вычисление вероятности появления первого туза - student2.ru статистика.

Формула расчета вычисление вероятности появления первого туза - student2.ru :

вычисление вероятности появления первого туза - student2.ru ,

где вычисление вероятности появления первого туза - student2.ru – наблюдаемая частота,

вычисление вероятности появления первого туза - student2.ru – теоретическая, или ожидаемая частота,

k – количество категорий.

1.4 Использование вычисление вероятности появления первого туза - student2.ru критерия согласия экспериментальных и теоретических частот

В следствии эксперимента (100 тасовок) были выяснены экспериментальные частоты появления первого туза при последовательном открытии карт, это было показано ранее в таблице 2, которая содержала значения частот появления первого туза на различных номерах карт.

Изобразив теоретические и экспериментальные частоты на одном графике, так как это изображено на рисунке 4, можно наглядно оценить то, что при росте номеров карт частоты убывают одинаково.

вычисление вероятности появления первого туза - student2.ru

Рисунок 4. График экспериментальной и теоретической частоты появления первого туза на определенном порядковом номере

Чтобы проверить ведут ли себя экспериментальные частоты так же как и высчитанные теоретически нужно выдвинуть две гипотезы:

Нуль-гипотеза вычисление вероятности появления первого туза - student2.ru заключается в том, что распределение экспериментальных частот подчиняется распределению теоретических частот, следовательно первый туз появляется чаще в начале колоды.

Альтернативная-гипотеза вычисление вероятности появления первого туза - student2.ru заключается в том, что распределение экспериментальных частот не подчиняется распределению теоретических частот, следовательно не известно где чаще появляется туз.

Пусть уровень значимости α = 0.05. Это означает, что результат будет верен с вероятностью 95%.

Составив таблицу содержащую экспериментальные вычисление вероятности появления первого туза - student2.ru и теоретические вычисление вероятности появления первого туза - student2.ru частоты, а так же посчитанные значения по формуле, получим таблицу 5:

Таблица 5

Экспериментальные и теоритические частоты, а так же на основании частот найденная сумма вычисление вероятности появления первого туза - student2.ru

вычисление вероятности появления первого туза - student2.ru вычисление вероятности появления первого туза - student2.ru вычисление вероятности появления первого туза - student2.ru вычисление вероятности появления первого туза - student2.ru вычисление вероятности появления первого туза - student2.ru вычисление вероятности появления первого туза - student2.ru
7,7 0,062308 1,6 1,610043
7,1 1,353925 1,5 0,206093
6,7 1,660022 1,3 1,306170
6,3 0,253971 1,2 1,169748
5,9 0,003004 1,0 0,877620
5,5 1,129590 0,9 0,926085
5,1 0,003292 0,8 0,818105
4,8 0,009596 0,7 2,283176
4,5 0,046898 0,6 0,628003
4,1 0,005010 0,5 0,545141
3,8 0,006166 0,5 0,469914
3,6 0,053710 0,4 0,401951
3,3 4,171589 0,3 1,274436
3,0 5,166277 0,3 0,286342
2,8 3,669808 0,2 0,237958
2,6 0,798589 0,2 0,195360
2,4 0,178379 0,2 0,158181
2,1 0,614303 0,1 0,126050
2,0 0,468539 0,1 0,098599
1,8 0,839439 0,08 0,075459
  Сумма, вычисление вероятности появления первого туза - student2.ru : 34,188849

Нуль-гипотеза вычисление вероятности появления первого туза - student2.ru отвергается в случае если вычисление вероятности появления первого туза - student2.ru меньше критического значения вычисление вероятности появления первого туза - student2.ru (где k=49, α = 0,05), и считается достоверной при вычисление вероятности появления первого туза - student2.ru больше критического значения вычисление вероятности появления первого туза - student2.ru (где k=49, α = 0,05).

Из таблицы 5 видно, что сумма вычисление вероятности появления первого туза - student2.ru = 34,188849. А критическое значение вычисление вероятности появления первого туза - student2.ru при k=49 и степенью значимости α = 0,05 как показано на таблице 6 равно 66,33865.

Таблица 6

Фрагмент таблицы критических точек распределения Пирсона вычисление вероятности появления первого туза - student2.ru

k /α 0,01 0,025 0,05 0,95 0,975 0,99
6,6349 5,02389 3,84146 0,00393 0,00098 0,00016
9,21034 7,37776 5,99146 0,10259 0,05064 0,0201
11,34487 9,3484 7,81473 0,35185 0,2158 0,11483
13,2767 11,14329 9,48773 0,71072 0,48442 0,29711
15,08627 12,8325 11,0705 1,14548 0,83121 0,5543
16,81189 14,44938 12,59159 1,63538 1,23734 0,87209
18,47531 16,01276 14,06714 2,16735 1,68987 1,23904
20,09024 17,53455 15,50731 2,73264 2,17973 1,6465
21,66599 19,02277 16,91898 3,32511 2,70039 2,0879
23,20925 20,48318 18,30704 3,9403 3,24697 2,55821
69,95683 65,41016 61,65623 30,61226 28,36615 25,90127
71,2014 66,61653 62,82962 31,439 29,16005 26,65724
72,44331 67,82065 64,00111 32,26762 29,9562 27,41585
73,68264 69,02259 65,17077 33,09808 30,75451 28,17701
74,91947 70,22241 66,33865 33,93031 31,55492 28,94065
76,15389 71,4202 67,50481 34,76425 32,35736 29,70668

Так как найденное значение вычисление вероятности появления первого туза - student2.ru = 34,188849 < 66,33865, нуль-гипотеза вычисление вероятности появления первого туза - student2.ru считается достоверной с заданной значимостью α = 0,05 . То есть можно считать, что распределение экспериментальных частот подчиняется распределению теоретических частот, следовательно первый туз появляется чаще в начале колоды.

   

Наши рекомендации