Предпосылки метода наименьших квадратов (условия Гаусса-Маркова)
1. Математическое ожидание случайного отклонения равно нулю для всех наблюдений. E(ε1) = E(ε2) = … = E(εn) = 0 Данное условие означает, что случайное отклонение в среднем не оказывает влияния на зависимую переменную. В каждом конкретном наблюдении случайный член может быть либо положительным, либо отрицательным, но он не должен иметь систематического смещения.
2. Дисперсия случайных отклонений постоянна для любых наблюдений. Это условие подразумевает, что несмотря на то, что при каждом конкретном наблюдении случайное отклонение может быть либо большим, либо меньшим, не должно быть некой априорной причины, вызывающей большую ошибку (отклонение). σ2(u) = σ2u
Выполнимость данной предпосылки называется гомоскедастичностью (постоянством дисперсии отклонений). Невыполнимость данной предпосылки называется гетероскедастичностью (непостоянством дисперсии отклонений).
3. Случайные отклонения ui и uj являются независимыми друг от друга для i¹j. Выполнимость данной предпосылки предполагает, что отсутствует систематическая связь между любыми случайными отклонениями. Другими словами, величина и определенный знак любого случайного отклонения не должны быть причинами величины и знака любого другого отклонения. Выполнимость данной предпосылки влечет следующее соотношение:
Поэтому, если данное условие выполняется, то говорят об отсутствии автокорреляции.
4. Случайное отклонение должно быть независимо от объясняющих переменных. Обычно это условие выполняется автоматически, если объясняющие переменные не являются случайными в данной модели. Данное условие предполагает выполнимость следующего соотношения:
5. Модель является линейной относительно параметров.
Свойства оценок МНК.
В тех случаях, когда предпосылки выполняются, оценки, полученные по МНК, будут обладать свойствами несмещенности, состоятельности и эффективности.
Несмещенность оценкиозначает, что математическое ожидание остатков равно нулю. Если оценки обладают свойством несмещенности, то их можно сравнивать по разным исследованиям.
Для практических целей важна не только несмещенность, но и эффективность оценок. Оценки считаются эффективными, если они характеризуются наименьшей дисперсией. Поэтому несмещенность оценки должна дополняться минимальной дисперсией.
Степень достоверности доверительных интервалов параметров регрессии обеспечивается, если оценки будут не только несмещенными и эффективными, но исостоятельными. Состоятельность оценок характеризует увеличение их точности с увеличением объема выборки.