Общие динамические индексы

В случае, когда значения величины х, измеренные у всех единиц статистической совокупности, можно суммировать, совокупность называется простой. В этом случае общий индекс Общие динамические индексы - student2.ru величины х вычисляется по формуле:

Общие динамические индексы - student2.ru , (1.14.4)

где Общие динамические индексы - student2.ru и Общие динамические индексы - student2.ru – значения индексируемой величины x, измеренныеу i-й единицы совокупности в базисном и текущем периодах соответственно.

Пример 1.14.3. Значения товарооборота различных торговых предприятий, выраженные в одной и той же денежной единице, можно суммировать. Поэтому общий индекс товарооборота вычисляется по формуле:

Общие динамические индексы - student2.ru . (1.14.5)

Часто встречаются ситуации, когда значения величины х, измеренные у всех единиц статистической совокупности, нельзя суммировать. В этом случае статистическая совокупность называется сложной.

Пример 1.14.4.Ассортимент товаров состоит из товарных разновидностей, первичный учет которых на производстве и в торговле ведется в натуральных единицах измерения: молоко - в литрах, мясо - в центнерах, яйцо - в штуках, консервы - в условных банках, ткани - в метрах, костюмы - в штуках, обувь - в парах и т.д. Для определения общего объема производства и реализации таких товаров суммировать данные учета разнородных товарных масс в натуральных измерителях нельзя.

В этих ситуациях для сравнения базисных и текущих значений индексируемых величин применяются общие агрегатные индексы.

Пример 1.14.5.Рассмотрим ассортимент из n разнородных товаров с различными единицами измерения и различными ценами. Обозначим через Общие динамические индексы - student2.ru и Общие динамические индексы - student2.ru количество в натуральных единицах измерения и цену в рублях i-го товара (i=1,2,..., n). Количества этих товаров нельзя суммировать, но можно, складывая произведения Общие динамические индексы - student2.ru , получить стоимость всех товаров (товарооборот). Поэтому можно узнать, как изменилось текущее значение товарооборота по сравнению с его базисным значением в результате изменения только количества товаров при условии, что цены товаров взяты на уровне текущего, либо базисного периода.

В первом случае фиксируем цены на уровне текущего периода и вычисляем отношение:

Общие динамические индексы - student2.ru . (1.14.6)

Отношение (1.14.6) называется общим индексом количества Общие динамические индексы - student2.ru в форме Паше по имени предложившего ее немецкого экономиста Г. Пааше.

Во втором случае фиксируем цены на уровне базисного периода и вычисляем отношение:

Общие динамические индексы - student2.ru . (1.14.7)

Отношение (1.14.7) называется общим индексом количества Общие динамические индексы - student2.ru в форме Ласперейса по имени предложившего ее немецкого экономиста Э. Ласперейса.

В формулах (1.14.6) и (1.14.7) количество q является индексируемой величиной. Так как значение Общие динамические индексы - student2.ru показывает, сколько раз встречается значение Общие динамические индексы - student2.ru , то цена как бы «взвешивает» количество - чем больше цена, тем весомее количество. Поэтому, в этих формулах цена называется весовой величиной, а ее значения Общие динамические индексы - student2.ru – весами. Заметим, что величина pq - произведение индексируемой и вестовой величин имеет экономический смысл – товарооборот.

С другой стороны, можно узнать, как изменилось текущее значение товарооборота по сравнению с его базисным значением в результате изменения только цен товаров при условии, что количества товаров взяты на уровне текущего, либо базисного периода.

В первом случае фиксируем количество товаров на уровне текущего периода и вычисляем отношение:

Общие динамические индексы - student2.ru . (1.14.8)

Отношение (1.14.8) называется общим индексом цен Общие динамические индексы - student2.ru в форме Пааше.

Во втором случае фиксируем количества товаров на уровне базисного периода и вычисляем отношение:

Общие динамические индексы - student2.ru . (1.14.9)

Отношение (1.14.9) называется общим индексом цен Общие динамические индексы - student2.ru в форме Ласперейса.

В формулах (1.14.8) и (1.14.9) цена p называется индексируемой величиной. Так как значение Общие динамические индексы - student2.ru показывает, сколько раз встречается значение Общие динамические индексы - student2.ru , то количество как бы «взвешивает» цену – чем больше количество, тем весомее цена. Поэтому, в этих формулах количество называется весовой величиной, а ее значения Общие динамические индексы - student2.ru – весами.

Заметим, что между индексами (1.14.6)-(1.14.9) имеются взаимосвязи:

Общие динамические индексы - student2.ru Общие динамические индексы - student2.ru Общие динамические индексы - student2.ru = Общие динамические индексы - student2.ru и Общие динамические индексы - student2.ru Общие динамические индексы - student2.ru Общие динамические индексы - student2.ru = Общие динамические индексы - student2.ru . (1.14.10)

Обобщая пример 1.14.5, определим агрегатный индекс величины х в форме Пааше и Ласперейса соответственно по формулам:

Общие динамические индексы - student2.ru (1.14.11)

и

Общие динамические индексы - student2.ru . (1.14.12)

В формулах (1.14.11) и (1.14.12) величина х называется индексируемой величиной, величина v - весовой, а ее значения - весами. Значение Общие динамические индексы - student2.ru величины v показывает, сколько раз повторяется значение Общие динамические индексы - student2.ru . величины х. Произведение величин x и v должно иметь экономический смысл.

Индексы (1.14.11) и (1.14.12) сравнивают текущее значение величины xv с ее базисным значением при условии, что веса взяты на уровне текущего или базисного периода соответственно. Произведения Общие динамические индексы - student2.ru и Общие динамические индексы - student2.ru равны неагрегатному индексу величины xv:

Общие динамические индексы - student2.ru . (1.14.13)

Пример 1.14.6. Вычислим общие индексы цен, количества товара и товарооборота по данным табл. 1.14.3.

Таблица 1.14.3

Наши рекомендации