Критическая область и ее отыскание. Мощность критерия
Статистической называют гипотезу о виде неизвестного распределения, или о параметрах известных распределений.
Например, статистическими будут гипотезы:
1. генеральная совокупность распределена по закону Пуассона;
2. дисперсии двух нормальных совокупностей равны между собой.
Наряду с выдвинутой гипотезой рассматривают и противоречащую ей гипотезу. Если выдвинутая гипотеза будет отвергнута, то имеет место противоречащая гипотеза. По этой причине эти гипотезы целесообразно различать.
Нулевой (основной) называют выдвинутую гипотезу .
Конкурирующей (альтернативной)называют гипотезу которая противоречит нулевой.
Для проверки нулевой гипотезы используют специально подобранную случайную величину, точное или приближенное распределение которой известно. Эту величину обозначают через U или Z, если она распределена нормально, F или — по закону Фишера — Снедекора, Т — по закону Стьюдента, — по закону «хи квадрат» и т. д. Поскольку в этом параграфе вид распределения во внимание приниматься не будет, обозначим эту величину, в целях общности, через К.
Статистическим критерием (или просто критерием) называют случайную величину К, которая служит для проверки нулевой гипотезы.
Для проверки гипотезы по данным выборок вычисляют частные значения входящих в критерий величин, и таким образом получают частное (наблюдаемое) значение критерия.
Критической областью называют область значений критерия, при которых нулевую гипотезу отвергают, областью принятия гипотезы – область значений критерия, при которых гипотезу принимают.
Область принятия нулевой гипотезы (область допустимых значений) – совокупность значений критерия, при котором нулевую гипотезу принимают. При справедливости нулевой гипотезы вероятность того, что статистика критерия попадает в область принятия нулевой гипотезы должна быть равна 1-Ркр.
Порядок проверки статистической гипотезы таков:
1) задается уровень значимости α, выбирается статистический критерий К и вычисляется (обычно по таблицам для закона распределения К) значение kкр; определяется вид критической области;
2) по выборке вычисляется наблюдаемое значение критерия Кнабл;
3) если Кнабл попадает в критическую область, нулевая гипотеза отвергается; при попадании Кнабл в область принятия гипотезы нулевая гипотеза принимается.
Мощностью критерия называют вероятность попадания критерия в критическую область при условии, что верна конкурирующая гипотеза.
Если обозначить вероятность ошибки второго рода (принятия неправильной нулевой гипотезы) β, то мощность критерия равна 1 – β. Следовательно, чем больше мощность критерия, тем меньше вероятность совершить ошибку второго рода. Поэтому после выбора уровня значимости следует строить критическую область так, чтобы мощность критерия была максимальной.