Расслоенная (типическая или районированная) выборка

В составе генеральной совокупности с различным уровнем изучаемого признака желательно обеспечить более равномерное представительство в выборочной совокупности различных типов. Эта цель достигается при применении расслоенной (типической или стратифицированной) выборки. Эту выборку применяют также в целях более равномерного представления в выборке различных районов, и в этом случае ее называют районированной выборкой.

При типической выборке неоднородная генеральная совокупность подразделяется на более однородные в отношении изучаемых признаков группы (типы, районы). По каждой группе определяются ее объем ( Расслоенная (типическая или районированная) выборка - student2.ru ) и число подлежащих наблюдению единиц ( Расслоенная (типическая или районированная) выборка - student2.ru ). Отбор обследуемых единиц производится в каждой группе при помощи одного из способов случайного отбора - повторного или бесповторного.

Общее число единиц выборочной совокупности распределяется между группами пропорционально численности групп в составе генеральной совокупности. Такой отбор называется пропорциональным.

N — общая численность единиц в генеральной совокупности

Расслоенная (типическая или районированная) выборка - student2.ru ,

где N1, N2, ..., Nk - численность отдельных групп генеральной совокупности;

п — общий объем выборочной совокупности.

Объем выборки для каждой группы –

Расслоенная (типическая или районированная) выборка - student2.ru;

где Расслоенная (типическая или районированная) выборка - student2.ru - удельный вес данной (i - й) группы в генеральной совокупности;

n = n1+n2+…+nk.

Кроме пропорционального размещения по группам численности единиц выборочной совокупности применяется так называемое оптимальное размещение, при котором число наблюдений в группе определяется по формуле

Расслоенная (типическая или районированная) выборка - student2.ru .

Формулы для расчета ошибок типической выборки приведены в табл. 4.3.

В табл. 4.3 приняты следующие условные обозначения:

Расслоенная (типическая или районированная) выборка - student2.ru - средняя групповая выборочная дисперсия средней;

Расслоенная (типическая или районированная) выборка - student2.ru ;

Расслоенная (типическая или районированная) выборка - student2.ru — внутригрупповая дисперсия данной (i-и) группы в выборочной совокупности;

Расслоенная (типическая или районированная) выборка - student2.ru - средняя групповая выборочная дисперсия доли;

Расслоенная (типическая или районированная) выборка - student2.ru ;

Как видно из приведенных формул, величина стандартной ошибки типической выборки зависит только от точности определения групповых средних, т. е. от величины внутригрупповых дисперсий. Согласно правилу сложения дисперсий общая дисперсия слагается из межгрупповой дисперсии и средней из внутригрупповых дисперсий. Отсюда следует, что ошибка типической случайной выборки меньше, чем ошибка простой случайной выборки.

Предельная (максимально возможная) ошибка типической выборки:



Расслоенная (типическая или районированная) выборка - student2.ru ; Расслоенная (типическая или районированная) выборка - student2.ru



Таблица.3

Формулы ошибок типической выборки

  Способ отбора единиц
повторный бесповторный
Средняя ошибка ( Расслоенная (типическая или районированная) выборка - student2.ru ): для средней: а) при пропорциональном размещении единиц Расслоенная (типическая или районированная) выборка - student2.ru Расслоенная (типическая или районированная) выборка - student2.ru
б) при оптимальном размещении единиц Расслоенная (типическая или районированная) выборка - student2.ru Расслоенная (типическая или районированная) выборка - student2.ru
для доли: а) при пропорциональном размещении единиц Расслоенная (типическая или районированная) выборка - student2.ru Расслоенная (типическая или районированная) выборка - student2.ru
б) при оптимальном размещении единиц Расслоенная (типическая или районированная) выборка - student2.ru Расслоенная (типическая или районированная) выборка - student2.ru

Необходимый объем выборки определяется на основе формулы и величины допустимой ошибки.

Серийная выборка

Сущность серийной выборки заключается в том, что вместо случайного отбора единиц совокупности осуществляется отбор групп (серий, гнезд). Внутри отобранных серий производится сплошное наблюдение. Серии (гнезда) состоят из единиц, связанных между собой или территориально, или организационно, или, наконец, во времени. Отбор серий может производиться в порядке повторного и бесповторного отбора. Серии могут быть равновеликими и неравновеликими. На практике чаще применяется серийный отбор с равными сериями.

Стандартная ошибка при равновеликих сериях определяется по формулам, представленным в табл. 4.

Таблица 4

  Способ отбора серий
повторный бесповторный
Средняя ошибка ( Расслоенная (типическая или районированная) выборка - student2.ru ): для средней Расслоенная (типическая или районированная) выборка - student2.ru Расслоенная (типическая или районированная) выборка - student2.ru
для доли Расслоенная (типическая или районированная) выборка - student2.ru Расслоенная (типическая или районированная) выборка - student2.ru

В табл. 4.4 приняты следующие условные обозначения:

Расслоенная (типическая или районированная) выборка - student2.ru — межгрупповая выборочная дисперсия средней;

Расслоенная (типическая или районированная) выборка - student2.ru ;

где Расслоенная (типическая или районированная) выборка - student2.ru - средний уровень признака в серии;

Расслоенная (типическая или районированная) выборка - student2.ru - средний уровень признака для всей выборочной совокупности;

т - число равных серий в выборочной совокупности;

М - число равных серий в генеральной совокупности;

Расслоенная (типическая или районированная) выборка - student2.ru - межгрупповая выборочная дисперсия доли;



Расслоенная (типическая или районированная) выборка - student2.ru ,

где wi - доля единиц, обладающих данным признаком в серии;

w — доля единиц, обладающих данным признаком во всей выборочной совокупности.

Ошибка серийной выборки больше, чем при любом другом способе отбора. Тем не менее серийный отбор широко применяется на практике, что объясняется его организационными преимуществами.

Механическая выборка

Механическая выборка заключается в отборе единиц из генеральной совокупности через равные промежутки из определенного расположения их в генеральной совокупности (по алфавиту, в пространстве, последовательности появления во времени).

При организации механического отбора возникают две задачи:

¨ определение «шага отчета» (расстояния между отбираемыми
единицами);

¨ выбор единицы, с которой надо начинать отчет.

«Шаг отчета» определяется путем деления численности генеральной совокупности на численность выборочной совокупности: Расслоенная (типическая или районированная) выборка - student2.ru .

Выбор начала отчета рекомендуется производить путем случайного отбора из единиц первого интервала - первого «шага отчета». Механический отбор может осуществляться в самом процессе наблюдения, и его удобно применять тогда, когда выборочно наблюдается масса постепенно возникающих перед наблюдателем единиц (например, производят проверку каждой 10-й, 20-й и т. д. детали, обработанной на станке).

Если в генеральной совокупности единицы располагаются случайным образом по отношению к изучаемому признаку то механический отбор можно рассматривать как разновидность случайного бесповторного отбора; поэтому для оценки ошибки механической выборки применяются формулы случайной бесповторной выборки:

Расслоенная (типическая или районированная) выборка - student2.ru ; Расслоенная (типическая или районированная) выборка - student2.ru ;

Расслоенная (типическая или районированная) выборка - student2.ru ; Расслоенная (типическая или районированная) выборка - student2.ru .

Наши рекомендации